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Given the same sensory stimuli in the same task, human observers do not always make the same response.
Well-known sources of behavioral variability are sensory noise and guessing. Visual short-term memory
(STM) studies have suggested that the precision of the sensory noise is itself variable. However, it is
unknown whether precision is also variable in perceptual tasks without a memory component. We
searched for evidence for variable precision in 11 visual perception tasks with a single relevant feature,
orientation. We specifically examined the effect of distractor stimuli: distractors were absent, homoge-
neous and fixed across trials, homogeneous and variable, or heterogeneous and variable. We first
considered 4 models: with and without guessing, and with and without variability in precision. We
quantified the importance of both factors using 6 metrics: factor knock-in difference, factor knock-out
difference, and log factor posterior ratio, each based on AIC or BIC. According to all 6 metrics, we found
strong evidence for variable precision in 5 experiments. Next, we extended our model space to include
potential confounding factors: the oblique effect and decision noise. This left strong evidence for variable
precision in only 1 experiment, in which distractors were homogeneous but variable. Finally, when we
considered suboptimal decision rules, the evidence also disappeared in this experiment. Our results
provide little evidence for variable precision overall and only a hint when distractors are variable.
Methodologically, the results underline the importance of including multiple factors in factorial model
comparison: Testing for only 2 factors would have yielded an incorrect conclusion.
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When presented with the same stimuli in the same perceptual
task, human observers do not always make the same response. One
source of such variability is noise in the encoding stage—the
mapping from the stimulus to the internal representation. This
mapping is noisy at the neural level (Faisal, Selen, & Wolpert,
2008; London, Roth, Beeren, Häusser, & Latham, 2010; Tolhurst,
Movshon, & Dean, 1983) and has long been modeled as noisy in
behavioral models (Fechner, 1860; Green & Swets, 1966; Thur-
stone, 1927). It is furthermore common to assume that such sen-
sory or encoding noise follows a Gaussian distribution in the
stimulus space (Green & Swets, 1966), or a Von Mises distribution
when the stimulus variable is circular (Wilken & Ma, 2004; Zhang
& Luck, 2008).

In recent years, the idea has been explored that encoding pre-
cision—roughly the inverse of the variance of the sensory
noise—is itself a random variable. Such random variability is
distinct from the systematic variation of precision with set size
(Mazyar, van den Berg, & Ma, 2012; Mazyar, van den Berg, &
Seilheimer, 2013; Palmer, 1990; Shaw, 1980; Wilken & Ma,
2004). Throughout this article, variability in precision will refer to
variability at a given set size, but this variability could occur both
across trials and within a trial across different stimuli. Variable-
precision models have been used to model human (Donkin, Nosof-
sky, Gold, & Shiffrin, 2013; Fougnie, Suchow, & Alvarez, 2012;
Keshvari, van den Berg, & Ma, 2012, 2013; Oberauer & Lin, 2017;
Pratte, Park, Rademaker, & Tong, 2017; van den Berg, Awh, &
Ma, 2014; van den Berg, Shin, Chou, George, & Ma, 2012) and
monkey (D. T. Devkar, Wright, & Ma, 2015; D. Devkar, Wright,
& Ma, 2017) behavior in visual short-term memory (STM) tasks as
well as human behavior in visual search tasks (Bhardwaj, van den
Berg, Ma, & Josić, 2016; Mazyar et al., 2012, 2013). A related
concept appears in the beta-binomial model for the psychometric
curve (Schütt, Harmeling, Macke, & Wichmann, 2016), where an
extra parameter is used to capture variability in the probability of
a binary response. At the neural level, variable precision might
have a parallel in the single (Bays, 2014) or double stochasticity of
neural spike counts (Churchland et al., 2011; Goris, Movshon, &
Simoncelli, 2014; van den Berg, Yoo, & Ma, 2017).

Variable precision could in principle be confounded with or
partly explained by other factors. First, on some proportion of
trials, encoding precision might be exactly zero, for example due
to lapses in attention; this is typically modeled as a guessing rate
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(Harvey, 1986; Watson & Pelli, 1983; Wichmann & Hill, 2001).
Moreover, in binary decisions, errors in the mapping between
decision and motor output are mathematically equivalent to
guesses. Because variable precision in a sense interpolates between
zero precision and a fixed nonzero precision, it sometimes mimics
guessing (Keshvari, van den Berg, & Ma, 2013; van den Berg et
al., 2012, 2014). Second, variability in precision could be partly
explained by systematic variations of precision across the stimulus
space. For example, cardinal orientations (horizontal or vertical)
are encoded with higher precision than oblique orientations. This
phenomenon is called the “oblique effect” (Andrews, 1965, 1967;
Appelle, 1972; Girshick, Landy, & Simoncelli, 2011; Pratte et al.,
2017) and is an example of heteroskedasticity, whereby some
measure of dispersion (skedasis) differs across subgroups. Het-
eroskedasticity has also been described in color perception and
color visual STM (Bae, Olkkonen, Allred, Wilson, & Flombaum,
2014). Heteroskedasticity could be due to a nonuniform distribu-
tion of the preferred stimuli of visual cortical neurons (Li, Peter-
son, & Freeman, 2003; De Valois, Yund, & Hepler, 1982; Mans-
field & Ronner, 1978). This distribution might in turn have
adapted to stimulus statistics in natural environments (Attneave,
1954; Barlow, 1961; Girshick et al., 2011) and therefore might be
explained by theories of efficient coding (Ganguli & Simoncelli,
2014; Wei & Stocker, 2015). Third, decision noise, or suboptimal-
ity in inference, might be confounded with sensory noise in gen-
eral, and with variable precision in particular. Decision noise refers
to any noise in the mapping from the internal representation to the
decision (Mueller & Weidemann, 2008). Statistical inefficiency or
inference noise (Burgess, Wagner, Jennings, & Barlow, 1981;
Drugowitsch, Wyart, Devauchelle, & Koechlin, 2016; Liu, Knill,
& Kersten, 1995), model mismatch (Beck, Ma, Pitkow, Latham, &
Pouget, 2012; Orhan, Sims, Jacobs, & Knill, 2014), and other
forms of systematic suboptimal inference (Gigerenzer & Gold-
stein, 1996; Shen & Ma, 2016; Simon, 1956) could mimic decision
noise, because a model that treats the decision stage as optimal will
attribute any systematic deviations from optimality to random
variability, that is, decision noise.

In principle, it is possible that variability in precision found in
previous work captures what is in reality guessing, heteroskedas-
ticity, or decision noise. Only a few studies, all in the realm of
visual STM, have attempted to disentangle some of these factors.
Some studies have compared a variable-precision model with a
fixed-precision model with a lapse rate (D. T. Devkar et al., 2015;
Keshvari et al., 2012; van den Berg et al., 2012, 2014). Other
studies have argued that the oblique effect accounts for most of
what otherwise would be designated as variable precision (Pratte et
al., 2017). Here, we attempt to distinguish guessing, the oblique
effect, and decision noise from residual variable precision by
including all factors simultaneously in our models.

Most previous studies that claim evidence for residual variable
precision are in the realm of visual STM (Donkin et al., 2013;
Fougnie et al., 2012; Keshvari et al., 2012, 2013; Oberauer & Lin,
2017; Pratte et al., 2017; van den Berg et al., 2012, 2014). In that
domain, explanations for residual variable precision have included
variability in spike counts for a given gain (Bays, 2014), fluctua-
tions in attention (Cohen & Kohn, 2011; Cohen & Maunsell,
2009), shifts in attention (Lara & Wallis, 2012), and variable
memory decay (Fougnie et al., 2012). However, only the last of
these seems specific to memory; the other explanations would

predict that residual variable precision also plays a role in percep-
tion without a memory component. Therefore, the present study,
on residual variable precision in purely perceptual tasks, could
help narrow down possible mechanisms of residual variable pre-
cision.

Experimental Methods

Experimental Design

We conducted eight new target categorization experiments and
analyzed the results of three previously published experiments
(Table 1, Figure 1). The previously published experiments are
numbered Experiment 7 (was Experiment 1 in Shen & Ma, 2016),
Experiment 8 (was Experiment 2 in Mazyar et al., 2013), and
Experiment 11 (was Experiment 1 in Mazyar et al., 2013).
All experiments were identical in the following aspects:

• Stimuli were Gabors, with orientation the only relevant
feature.

• Subjects fixated and all stimuli were presented at the same
eccentricity (5° of visual angle).

• Stimuli were presented for a short duration (50 ms or 83
ms).

• There was no substantial visual STM component.
• Subjects made binary choices.
• There were no intertrial dependencies.

We designed our experiments to search for variability in preci-
sion that cannot be accounted for by set size, guessing, the oblique
effect, or decision noise. In the realm of visual STM, it has been
suggested that precision is variable due to stochasticity in the rate
of decay of memory (Fougnie et al., 2012); however, our study is
not a memory study. Another idea has been that stimulus context
has a large effect on the quality of any one stimulus (Brady &
Alvarez, 2015). We take inspiration from this suggestion and
examine whether evidence for residual variable precision is stron-
ger in experiments where the stimulus context is more variable.
Concretely, we considered a variety of visual perception tasks that
differed in the complexity of the distractor context (Table 1): in
Experiments 1 to 4, there were no distractors; in Experiments 5 and
6, distractors were homogeneous and their value remained un-
changed over trials; in Experiments 7 and 8, distractors were
homogeneous but varied across trials; and finally, in Experiments
9–11, distractors were both heterogeneous and variable across
trials. We hypothesized that the evidence for the “residual” vari-
able precision would be higher when the distractor context is more
complex.

In addition to distractor context, our experiments differed in
other aspects (Table 1), including task type (Experiments 8 and 11
are detection tasks; others are categorization tasks), orientation
range (narrow range in Experiments 1, and 3–8; full range in
Experiments 2, 9, and 11), number of targets (multiple targets in
Experiment 2; one target in all others), set size (set size equal to 1
on all trials in Experiment 1 and some trials in Experiments 4, 6,
8, 10, and 11; set size is greater than 1 otherwise), set size context
(single set size in Experiments 1, 2, 3, 5, 7, 9; multiple set sizes in
other experiments), and ambiguity (Experiments 9 and 10 contain
ambiguity, others not). To the best of our ability, we examined the
effects of these factors, to ensure that our conclusions are robust.
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Apparatus and Stimuli

Subjects were seated at a viewing distance of approximately 60
cm. All stimuli were displayed on a 21-in. LCD monitor with a
refresh rate of 60 Hz and a resolution of 1,280 � 1,024 pixels. The
stimulus displays were composed of Gabor patches shown on a
gray background. In Experiments 1–7, 9, and 10, background
luminance was 29.3 cd/m2 and the Gabors had a peak luminance
of 35.2 cd/m2, a spatial frequency of 3.1 cycles per degree of visual
angle, a standard deviation of the Gaussian envelope of 0.25° of
visual angle, and a phase of 0 for the cosine pattern. Settings were
different in Experiments 8 and 11 (see Mazyar et al., 2013):
background luminance was 33.1 cd/m2 and the Gabors had a peak
luminance of 122 cd/m2, a spatial frequency of 1.6 cycles per
degree of visual angle, a standard deviation of the Gaussian enve-
lope of 0.29° of visual angle, and a phase of 0 for the cosine
pattern.

Experimental Procedures

Each trial started with a fixation dot on a blank screen (500 ms)
followed by a stimulus display (50 ms in Experiments 1–7, 9, and
10; 83 ms in Experiments 8 and 11). Then, a blank screen was
shown until the subject responded by pressing a button. Response
time was not limited. After the response, feedback regarding
correctness was given by changing the color of the fixation dot
(green for correct, red for incorrect; 500 ms; Figure 1). Experi-
ments 1–7, 9, and 10 were visual categorization tasks and Exper-
iment 8 and 11 were visual detection tasks.

Experiments 1–7, 9, and 10 each consisted of three sessions on
different days. Each session consisted of five blocks, and each
block contained 200 trials, for a total of 3 � 5 � 200 � 3,000 trials
per subject. All blocks were statistically identically to each other.

Experiment 8 (Experiment 2 in Mazyar et al., 2013) consisted of
four sessions; here, we analyze only the two sessions with homo-
geneous distractors (for details, see Mazyar et al., 2013). Each
session consisted of four blocks, and each block contained 175
trials, for a total of 2 � 4 � 175 � 1,400 trials per subject
analyzed here.

Experiment 11 (Experiment 1 in Mazyar et al., 2013) consisted
of six sessions; here, we analyze only the two sessions with “high”
heterogeneity (for details, see Mazyar et al., 2013). Each session
consisted of four blocks, and each block contained 175 trials, for
a total of 2 � 4 � 175 � 1,400 trials per subject analyzed here.

Stimulus Displays and Tasks

We now describe the stimulus display in each of the 11 exper-
iments (Figure 1). We will use the phrase “drawn randomly” as
shorthand for “drawn randomly from a uniform distribution over
the values specified.” The radial positions of all stimuli in all
experiments were 5° of visual angle relative to fixation. For the
angular positions of the stimuli, we use the standard convention of
polar coordinates: 0° corresponds to the positive horizontal axis,
and positive values correspond to positions counterclockwise with
respect to that axis. For stimulus orientations, we use the conven-
tion that is most natural given our orientation distributions: 0° is
vertical and positive values are clockwise.

Experiment 1. The stimulus display consisted of a single
stimulus in one of four angular positions: �135°, �45°, 45°, and
135°. Stimulus orientation was drawn randomly from 19 values
equally spaced between �15° and 15°. The subject reported the tilt
with respect to vertical of a single oriented stimulus.

Experiment 2. The stimulus display consisted of two stimuli,
placed on the horizontal axis to the left and right of the fixation.
The stimulus on the right was the reference stimulus, whose

Table 1
Overview of Experiments

Experiment
Number of

subjects
Number of

stimuli
Number of

targets Task Distractors
Ambiguity in

the task

1 6 1 1 Target categorization relative
to vertical

None No

2 5 2 1 Target categorization relative
to reference (stimulus on the
right)

None No

3 6 4 all Target categorization relative
to vertical

None No

4 6 1, 2, 4, 8 all Target categorization relative
to vertical

None No

5 6 4 1 Target categorization relative
to vertical

Vertical No

6 6 1, 2, 3, 4 1 Target categorization relative
to vertical

Vertical No

7 10 4 1 Target categorization relative
to vertical

Homogeneous, variable No

8 13 1, 2, 4, 8 0, 1 Target detection, vertical target Homogeneous, variable No
9 6 4 1 Target categorization relative

to vertical
Heterogeneous, variable Yes

10 11 1, 2, 4, 8 1 Target categorization relative
to vertical

Heterogeneous, variable Yes

11 6 1, 2, 4, 8 0, 1 Target detection, vertical target Heterogeneous, variable No

Note. For distractors, we use “homogeneous” and “heterogeneous” to indicate that the distractors are identical to or different from each other, respectively,
within a display; we use “variable” to indicate variability across trials. Experiment 7 was previously published as Experiment 1 in Shen and Ma (2016).
Experiments 8 and 11 were previously published as Experiments 2 and 1 in Mazyar et al. (2013), respectively.
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Figure 1. Experimental designs. The left column shows the trial procedure and the right column shows the
orientation distribution of the stimuli. See the online article for the color version of this figure.
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orientation sref was drawn randomly (from a uniform distribution
over the entire orientation space). The stimulus on the left was the
target stimulus, whose orientation was drawn randomly from a
Von Mises distribution centered at sref with a concentration pa-
rameter of 10. The subject reported whether the target was oriented
clockwise or counterclockwise with respect to sref.

Experiments 3 and 4. All stimuli were targets, and the sub-
ject reported the tilt of their common orientation. In Experiment 3,
set size was 4, and the angular positions were as in Experiment 1.
The common orientation was drawn randomly from 19 values
equally spaced between �15° and 15°. In Experiment 4, set size
was 1, 2, 4, or 8, drawn randomly. Angular positions were chosen
as follows, in order to maximize spacing. At set size 8, we used all
eight angular positions: 0°, 45°, 90°, 135°, 180°, �45°, �90°,
and �135°. At set sizes 1, 2, and 4, we placed the first stimulus at
a random angular position. At set size 2, we then placed the second
stimulus diametrically opposite to the first, while at set size 4, we
placed the remaining three stimuli at every other position. Stimulus
orientation was drawn randomly from 19 values equally spaced
between �5° and 5°.

Experiment 5 and 6. Experiment 5 and 6 were target classi-
fication tasks. Subjects reported the tilt of the target relative to
vertical. In Experiment 5, set size was 4 and the angular positions
were the same as in Experiment 1. Three of the stimuli were
vertical; these were the distractors. The fourth stimulus, whose
position was drawn randomly from the four positions, was the
target. Target orientation was drawn randomly from 19 values
equally spaced between �20° and 20°. The design of Experiment
6 was identical to that of Experiment 5, except that set size was 1,
2, 3, or 4, drawn randomly. Angular positions were drawn ran-
domly.

Experiment 7. We reanalyzed data from a previously pub-
lished target classification experiment (Shen & Ma, 2016). Set size
was 4 and the angular positions were the same as in Experiment 1.
Each display contained one target and three distractors; target
position was drawn randomly from the four positions. The target
orientation and the common distractor orientation were drawn
independently from the same Von Mises distribution centered at
vertical, with a concentration parameter of 10 (similar to a Gauss-
ian distribution with a standard deviation of 9.06°). Subjects re-
ported the tilt of the target (the unique stimulus).

Experiment 8. Experiment 8 was an orientation detection
task. Subjects reported whether or not a target was present. Set size
was 1, 2, 4, or 8, drawn pseudorandomly. At set size 8, all angular
positions were used. At set sizes 1, 2, and 4, the first stimulus was
placed at a random angular position, and the remaining stimuli
were placed at adjacent positions. The target orientation was
vertical. Trial type was “target present” or “target absent,” drawn
pseudorandomly. On target-absent trials, all stimuli were distrac-
tors. On target-present trials, one stimulus was the target stimulus
and the remaining stimuli were distractors; the position of the
target stimulus was drawn randomly from the available positions.
The common orientation of the distractors was drawn from a Von
Mises distribution centered at vertical, with a concentration pa-
rameter of 32 (similar to a Gaussian distribution with a standard
deviation of 5.06°).

Experiment 9 and 10. Experiments 9 and 10 were target
classification tasks. Subjects reported the tilt of the target relative
to vertical. In Experiment 9, set size was 4 and the angular

positions were the same as in Experiment 1. Each stimulus display
contained one target and three distractors; target position was
drawn randomly. Target orientation was drawn from a Von Mises
distribution with a mean of 0 and a concentration parameter of 10
(similar to a Gaussian distribution with a standard deviation of
9.06°). Each of the distractor orientations was drawn indepen-
dently from a uniform distribution over the entire orientation
space. The tasks in these experiments contained ambiguity, in the
sense that on some trials, either answer could be correct even in the
absence of sensory noise, because of the overlap between the target
and distractor distributions; as experimenters, we set the tilt of the
generated target as the correct answer. To help subjects learn the
task, we provided 10 static example Gabor patches from the target
and distractor distributions and verbally explained that the distrac-
tors were more likely to have large tilts than the targets. The
subjects performed well above chance (71.7 � 1.6%, student’s t
test: t(5) � 13.9, p � 10�4). The design of Experiment 10 was
identical to Experiment 9, except that the set size was 1, 2, 4, or 8,
drawn randomly on each trial. The stimulus placement was the
same as in Experiment 4. This experiment combined distractors
that were variable both within and across trials with multiple set
sizes. Again, this experiment had ambiguity when set size was
greater than 1 and therefore did not allow for perfect performance.
Nevertheless, subject accuracy was 72.6 � 1.7%, well above
chance (student’s t test: t(10) � 13.1, p � 10�6).

Experiment 11. We reanalyzed data from a previously pub-
lished target detection task (Experiment 1 in Mazyar et al., 2013).
The basic paradigm was the same as in Experiment 8, except that
the distractors were heterogeneous. Each distractor was indepen-
dently drawn from a uniform distribution over the entire orienta-
tion space, which was the same as in Experiments 9 and 10. This
experiment differed from those not only in the type of task (de-
tection instead of categorization), but also in the absence of am-
biguity: the stimulus statistics did not preclude perfect perfor-
mance.

Theory

For each experiment, we build process models in which the
stimuli give rise to measurements and the observer applies a
decision rule to the measurements to produce a category estimate
(Figure 2A). Our models consist of three steps:

1. The generative model: a statistical description of the
noisy internal measurements of the stimuli and of the
observer’s beliefs about how the stimuli are generated
(which may or may not be how they are actually gener-
ated). In this step, we consider two kinds of variability in
the precision of the measurement noise: the oblique effect
(O) and “residual” variable precision (V).

2. The observer’s decision model. In each experiment, we
assume that the observer applies an optimal decision rule,
which maximizes the posterior distribution under the
generative model of Step 1. In some experiments, we also
consider alternative suboptimal decision rules. Note that
even the optimal decision rule is not optimal in an abso-
lute sense, because (a) measurement noise is present, (b)
the generative model assumed by the observer is not
necessarily identical to the true generative model, and
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(c) we allow for the decision to be corrupted by decision
noise (D).

3. Prediction for the probabilities of the possible subject
responses on a given trial, (i.e., given the stimulus values
on that trial). This step combines the stimulus-
conditioned measurement distributions from Step 1 with
the decision rule from Step 2. We also incorporate guess-
ing (G) in this step.

We now describe each of these steps in greater detail.

Step 1a: Generative Model: Noisy Measurements

We assume that the observer makes a noisy measurement xi of
each physical orientation si, where i � 1, . . . , N labels the stimuli
in a given display (N is the set size). We denote the vector of
physical orientations of the stimuli by s and the vector of orien-
tation measurements by x. Throughout, we assume that the mea-
surements are independent given the stimuli,

p(x |s) � �
i�1

N

p(xi |si).

Because our stimulus feature is orientation, its space is periodic.
Therefore, the most principled choice for the noise distribution

p(xi |si) is a circular distribution. Specifically, following other
work (van den Berg et al., 2012; Wilken & Ma, 2004), we choose
a Von Mises distribution,

p(xi |si) � 1
�I0(�i)

e�icos2(xi�si), (1)

where �i is the concentration parameter, and I0 is the modified
Bessel function of the first kind of order 0.

However, when the stimulus range is narrow relative to the
entire 2� radians of the circle, the Von Mises distribution is well
approximated by a Gaussian distribution, which is both analyti-
cally and numerically more tractable. Therefore, when the stimulus
range is narrow (such as in Experiments 1 and 3–8), or the
orientation difference is narrow (Experiment 2), we assume that
the distribution of xi given si is Gaussian:

p(xi |si) � 1

�2��i
2
e�

(xi � si)
2

2�i
2 . (2)

Noise level or precision is controlled by the concentration
parameter �i (Von Mises) or by the standard deviation 	i (Gauss-
ian). The factor 2 in the exponent of the Von Mises distribution
appears because orientation space is [0, �) instead of [0, 2�). In
the limit of large �i, the Von Mises distribution converges to the

Gaussian distribution, with �i � 1
4�i

2.
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Figure 2. Generative model and factors that might affect behavioral variability. (A) The diagram shows the
generic generative model of our tasks. Each node represents a variable and each arrow between two nodes
represents a conditional dependence. Factors that might affect behavioral variability are listed to the right of the
diagram. Here, we test the bold-faced ones: oblique effect, residual variable precision, decision noise and
guessing. (B) We model the dependence of precision J on orientation s (the oblique effect) as (red dashed). The
black (solid) line represents constant precision (
 � 0). (C) In variable-precision models, we model the
probability distribution over precision as a gamma distribution; an example with a mean of 0.75 and a scale
parameter � of 0.5 is shown in blue (dashed line). The green (solid) line represents a delta function over
precision, corresponding to fixed precision (� � 0). See the online article for the color version of this figure.
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A general definition of precision based on p(xi |si) is as Fisher
information (Cover & Thomas, 2006). Fisher information, denoted
by J, is related to the parameters above through

J � 1
�2 (Gaussian)

J �
4�I1(�)

I0(�) (Von Mises),
(3)

where I1 is the modified Bessel function of the first kind of order
1. In previous work (Keshvari et al., 2012; Mazyar et al., 2012,
2013; van den Berg et al., 2012), we did not include the factor of
2 in Equation (1) and the factor of 4 in Equation (3), but instead
rescaled orientations from [0, �) to [0, 2�) before doing any
analysis. This rescaling is mathematically equivalent to inserting
those factors, but here, we opted against the rescaling so that we
can compare the results of Gaussian-based analysis to those of Von
Mises-based analysis with minimal confusion.

Step 1b: Generative Model: Variability in Precision

Next, we consider variability in the precision of the measure-
ment noise. This variability can be due to multiple sources.

Oblique effect (O). To model the oblique effect, we introduce
stimulus dependence in the dispersion parameter of the measure-
ment distribution. For Gaussian noise, we take the standard devi-
ation of the noise to be a rectified sine function of the stimulus
orientation (Girshick et al., 2011):

�i � �0(1 � � | sin(2si) | ),

where 	0 is the baseline noise level and 
 is the amplitude
parameter of orientation dependence. When 
 � 0, there is no
oblique effect. For precision Ji, we obtain (Figure 2B):

Ji � 1
�0

2(1 � � | sin(2si) | )2

�
J0

(1 � � | sin(2si) | )2 ,
(4)

where J0 � 1
�0

2 is the baseline precision. We use the latter equation

also for Von Mises noise.
“Residual” variable precision (V). Besides the oblique ef-

fect, precision might vary for other reasons; we will consider all
other sources collectively and call them “residual” variable preci-
sion, denoted by V. Variable-precision models have been success-
ful in describing behavior in many visual STM tasks, including
delayed estimation (Fougnie et al., 2012; van den Berg et al., 2014,
2012), change detection (Keshvari et al., 2012, 2013), and change
localization (D. T. Devkar et al., 2015; Keshvari et al., 2012). Most
of these articles have formalized variability in precision by a
assuming a gamma distribution over Ji:

p(Ji) � Gamma(Ji;
J̄
	

, 	), (5)

where J̄ is the mean precision, and � is called the scale parameter
(Figure 2C). We will follow this formalism here.

Combining factors O and V. In all experiments, we tested all
four combinations of the two forms of precision variability: a base
model with fixed precision (base), a model with only the oblique
effect (O), a model with only residual variable precision (V), and

a model with both (OV). In the base model, Ji is the same across
stimulus i and across trials. In the O model, Ji is computed from
Equation (4). In the V model, Ji is drawn independently across i
and across trials from a gamma distribution with mean J̄ and scale
parameter � (Equation 5). In the OV model, we first compute J̄
from Equation (4), then draw Ji from a gamma distribution with
mean J̄ and scale parameter � (Equation 5).

In experiments with multiple set sizes, we allowed J (models
with fixed precision), J0 (models with the oblique effect), or J̄
(models with residual variable precision) to vary with set size; we
did not impose a parametric form but fitted the parameter inde-
pendently at each set size (Mazyar et al., 2012, 2013).

Step 1c: Generative Model: Experimental Statistics

The generative model consists not only of the distribution
p(x |s), but also of the observer’s beliefs about the experimental
statistics. The variables relevant to those beliefs are category C
(target tilted left or right in the categorization experiments, target
present or absent in the detection experiments), and the individual
stimulus orientations s. We assume that the observer’s beliefs
about the category distribution p(C) and the category-conditioned
stimulus distributions p(s |C) are identical to the true ones, that is,
the ones set by the experimental design, with two exceptions:

• The two categories were always presented with probability
0.5. However, we did not assume that subjects would
believe this probability to be exactly 0.5. Instead, we used
a free parameter to characterize the observer’s prior prob-
ability that the stimulus was tilted right (pright) in the
categorization experiments, or that the stimulus was pres-
ent (ppresent) in the detection experiments.

• In Experiments 1, 3, 4, 5, and 6 we used discrete stimulus
values, for example, 19 values spaced linearly be-
tween �15° and 15° (Experiments 1 and 3), between �5°
and 5° (Experiment 4), and between �20° and 20° (Ex-
periments 5 and 6). We did not assume that subjects had
detailed knowledge of these values, but we instead as-
sumed that the observer believed that this distribution was
Gaussian with the same mean and standard deviation as
the actual distribution:

p(sT |C) � 2 · N�sT; 0, �s
2�H(C · sT), (6)

where 	s denotes the standard deviation of the actual distribution,
sT denotes the target orientation, and H(x) denotes the Heaviside
step function. In the Results section, we examine whether this
assumption affects our results.

Step 2: Decision Model: Bayesian Observer and
Decision Noise

The Bayesian observer “inverts” the generative model to obtain
a probability distribution over the variable of interest (here cate-
gory, C � 1 or C � �1 given the noisy measurements x on a given
trial. The Bayesian decision variable, denoted by d, is the log of the
ratio of the probabilities of C � 1 and C � �1 given x:

d � log p(C � 1 |x)
p(C � �1 |x) . (7)
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The Bayesian observer without decision noise uses the decision
rule to report “C � 1” when d is positive, or in other words,

Ĉ � sgn(d). (8)

The Bayesian observer is not strictly optimal, because we
made two modifications in Step 1c; for a detailed distinction
between the terms Bayesian and optimal, see Ma (2012). Other
than those, we assume that Bayesian observer has the full
knowledge of the noise distribution in the measurements (Equa-
tions 1, 2, 4, and 5).

Starting with Equation (7), we first apply Bayes rule to both the
numerator and denominator:

d � log p(C � 1)
p(C � �1) � log p(x |C � 1)

p(x |C � �1) . (9)

Now we evaluate the likelihood of each C by averaging over the
stimulus vector s:

p(x |C) � � p(x |s)p(s |C)ds. (10)

This is an example of Bayesian marginalization, in which each
possible value of the unknown variable s is considered.

The derivation so far applies to all experiments. p(x |s) has been
evaluated in Equation (1) or (2). We now evaluate p(s |C) in
Equation (10) separately for different experiments and for different
values of C.

Case 1: All Stimuli Are Targets

This case applies to all trials (C � �1) in three target catego-
rization tasks (Experiments 1, 3, and 4). We write p(s |C) as a
marginalization over the scalar target orientation sT:

p(s |C) � � p(s |sT)p(sT |C)dsT. (11)

Here, p(sT |C) is the category-conditioned distribution of sT (a
truncated Gaussian). p(s |sT) represents the distribution of the
N-dimensional stimulus vector s given a particular sT. Since all
stimuli are targets, we can write p(s |sT) as:

p(s |sT) � �
L�1

N


(sL � sT), (12)

where sL is the stimulus orientation at the Lth location, and �
denotes the Dirac delta function. Equation (12) illustrates that each
stimulus in the display only takes the value sT.

Case 2: All Stimuli Are Distractors

This case applies to the target-absent trials (C � �1) in the
target detection tasks (Experiments 8 and 11). We write p(s |C) as
a marginalization over the N-dimensional vector of distractor
orientations sD:

p(s |C � �1) � � p(s |sD)p(sD)dsD.

Because all stimuli are distractors, we can evaluate p(s |sD) as:

p(s |sD) � �
L�1

N


(sL � sDL),

where sDL is the distractor orientation at the Lth location. The
distractor distribution p(sD) is different between Experiment 8
(homogeneous distractors) and 11 (heterogeneous distractors).

Case 3: Exactly One Stimulus Is the Target

This case applies to all trials (C � �1) in five target categori-
zation tasks (Experiments 5, 6, 7, 9, and 10) and target-present
trials (C � 1) in the target detection tasks (Experiments 8 and 11).
We write p(s |C) as a marginalization over both the scalar target
orientation sT and the (N-1)-dimensional vector of distractor ori-
entations sD:

p(s |C) � �� p(s |sT, sD)p(sT |C)p(sD)dsTdsD. (13)

Here, p(s |sT, sD) represents the distribution of the stimulus
vector s given sT and sD. Given that exactly one stimulus is the
target, we can write this distribution as:

p(s |sT, sD) � 1
N �

L�1

N


(sL � sT)
(s\L � sD), (14)

where s\L denotes the vector of all stimuli except the Lth one. In
Equation (14), the average over L represents another example of
Bayesian marginalization: the observer does not know which stim-
ulus is the target and therefore has to consider all possibilities.

The target distribution p(sT |C) and the distractor distribution
p(sD) differ between experiments.

Case 4: The Stimulus on the Left Is the Target, While
the Stimulus on the Right Is the Reference

This case applies to all trials (C � �1) in the categorization task
of Experiment 2. We write p(s |C) as a marginalization over both
the scalar target orientation sT and the scalar reference orientation
sref:

p(s |C) � �� p(s |sT, sref)p(sT |sref, C)p(sref)dsT dsref, (15)

The stimuli s � (sleft, sright) are completely determined by the
values of sT and sref, and therefore p(s |sT, sref) is

p(s |sT, sref) � 
(sleft � sT)
(sright � sref). (16)

Finally, p(sref) is a uniform distribution and p(sT |sref, C) is a
Gaussian distribution centered at sref, truncated to either half
depending on C.

The worked-out Bayesian decision rules for all experiments are
given in Appendix A. In models with the oblique effect (O), we
assume that the observer knows the noise level 	 when evaluating
the decision variable d (Equation 7), but does not “realize” that
there is a relationship between 	 and orientation, s. Therefore, the
observer does not infer s from 	, for example by marginalizing
over 	. For a more principled examination of the implications of
heteroskedasticity for Bayesian observer models, see Wei and
Stocker (2015).

Decision noise (D). Decision noise (D) has been modeled
using a softmax function (Daw, O’Doherty, Dayan, Seymour, &
Dolan, 2006; Soltani & Wang, 2006), as Gaussian noise on the
decision criterion (Mueller & Weidemann, 2008), or as Gaussian
noise on the log posterior ratio (Drugowitsch et al., 2016; Keshvari
et al., 2012, 2013). Here, we use the last approach: The decision
variable d̃ follows a Gaussian distribution with a mean of d
(Equation 7) and a standard deviation of 	d:
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(d̃ |d) � N�d̃; d, �d
2�. (17)

The observer reports C � 1 if d̃ is positive.

Step 3: Predictions: Sampling of Measurements and
Guessing Rate

Step 2 produces a mapping from a set of measurements, x, to an
estimate of category Ĉ . However, we are ultimately interested in
the probability that on a given trial, the observer will make either
category response, that is, p�Ĉ �s� , where s are the physical stimuli
on that trial. This distribution is obtained as an average (margin-
alization) over measurement vectors x:

p(Ĉ |s) � � p(Ĉ |x)p(x |s)dx. (18)

Here, p�Ĉ �x� is deterministic and given by Step 2, and p(x |s) is
given by the measurement distributions in Step 1a. To approximate
this integral, we sampled, for each trial in the experiment, a large
number of measurement vectors x based on the physical stimuli s
on that trial. For each x, we applied the decision rule from Step 2,
and counted the outcomes. The proportions of either category
response serve as our approximation of p�Ĉ �s�. The number of
samples of x needs to be sufficiently large for the approximation to
be good. Based on an earlier test that showed convergence near
256 samples in a similar task (van den Berg et al., 2012, Appen-
dix), we chose 2,000 samples.

Guessing (G). We allowed for the possibility that the subject
guesses on some proportion of trials. To this end, we introduced a
guessing rate , so that the probability of reporting Ĉ given s
becomes

pwith guessing(Ĉ |s) � 0.5� � (1 � �)p(Ĉ |s). (19)

0.5 comes from the assumption that guesses are equally distributed
across the responses.

Factorial model comparison. We will denote the factors by
G, O, D, and V (see Table 2). We tested these factors in a factorial
manner (Acerbi, Vijayakumar, & Wolpert, 2014; van den Berg et
al., 2014), and got 16 models including all combinations of factor
presence and absence. We will denote each model by the combi-

nations of factors in the model. For example, GDV has all factors
except for O. In some experiments, we will combine these com-
binations with both optimal versus suboptimal decision rules, but
in most experiments, we will only consider the optimal decision
rule.

Modeling Methods

Model Fitting

We fitted the free parameters in each model (Table 2) to each
individual subject’s data using maximum-likelihood estimation.
The log likelihood of a given parameter combination is the loga-
rithm of the probability of all of the subject’s responses given the
model and each parameter combination:

logLM(parameters) � logp(data | M, parameters)

� log �
j�1

Ntrials

p(Ĉj |sj, M, parameters)

� �
j�1

Ntrials

logp(Ĉj |sj, M, parameters),

where j is the trial index, Ntrials is the number of trials, sj is the set
of orientations presented on the jth trial, Ĉj is the subject’s re-
sponse on the jth trial, and we have assumed that there are no
sequential dependencies between trials. The probability of the
subject response, logp�Ĉj �sj, M, parameters�, is obtained from
Equations (18) or (19). To find the values of parameters that
maximize log LM(parameters), we used Bayesian Adaptive Direct
Search (BADS; Acerbi & Ma, 2017), initialized with random
values for all parameters. After BADS returned a parameter com-
bination, we recomputed the log likelihood 10 times with that
combination and took the mean, to reduce sampling noise. We
performed this process for 10 different initializations and took the
maximum of the log likelihoods as the maximum log likelihood for
the model, LLmax(M). As a sanity check, we found that those
parameter combinations that gave the LLmax(M) were in a reason-
able range (Appendix D).

Model Comparison Metrics

We use the Akaike Information Criterion (AIC; Akaike, 1974)
and the Bayesian Information Criterion (BIC; Schwarz, 1978) as
metrics of badness of fit. These metrics penalize a model for
having more free parameters:

AIC(M) � 2kM � 2LLmax(M),
BIC(M) � log(Ntrials)kM � 2LLmax(M),

where kM is the number of parameters of model M and Ntrials is the
number of trials. Both AIC and BIC have their own advantages and
disadvantages (Burnham & Anderson, 2002, pp. 293–305, for a
pro-AIC account; Kass & Raftery, 1995, for a pro-BIC account).
AIC penalizes each parameter by 2 points, while BIC penalizes
each parameter by 8.0 points in Experiments 1–7, 9, and 10, and by
7.2 points in Experiment 8 and 11. We only draw conclusions
when both metrics provide strong evidence (see section “Jeffreys’
scale”). We use AIC/BIC and the corresponding factor importance
metrics (below) for all formal conclusions. For some models in
some experiments, we also show fits to the psychometric curves,

Table 2
Models, Model Factors, and Parameters

Model or model factor Corresponding parameter(s)

Model: Base Category prior: pprior

Precision: J
Factor: Guessing, G Guessing rate: 
Factor: Oblique effect, O Amplitude parameter of orientation

dependence: 

Factor: Decision noise, D Decision noise: 	d

Factor: Residual variable
precision, V Scale parameter: �

Model: Full or GODV All parameters above

Note. The base model has parameters J and pPrior. G, O, D, and V denote
the model factors that can be added to the base model, each with an
associated parameter. The full or GODV model is obtained by adding all
four factors. In each model, we fitted all parameters on an individual-
subject basis.
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but these are only meant as qualitative visual checks of the relative
and absolute goodness of fit of the models.

Factor Importance Metrics

We consider four model factors: guessing (G), the oblique effect
(O), decision noise (D), and “residual” variable precision (V).
Each can have two levels (absent and present), for a total of 16
models. We would like to draw conclusions about the importance
of each factor regardless of model. We are also interested in the
combination of O and V, because both are forms of variable
precision; in the context of factor importance metrics, we will for
brevity also refer to this combination as a factor.

In van den Berg, Awh, and Ma (2014), we quantified factor
importance by calculating the proportion of subjects for whom all
models in a given “model family” (e.g., all models in which G is
absent) are rejected (according to AIC), as a function of the
rejection criterion. This method has two disadvantages: (a) it
works at the population level and cannot be applied when the
number of subjects is small; and (b) it outputs a curve (function)
rather than a number. Therefore, we introduce three new factor
importance metrics here (Figure 3): knock-in difference (repre-
senting evidence for factor usefulness), knock-out difference (rep-
resenting evidence for factor necessity), and log factor likelihood
ratio (representing evidence for factor presence). The terms “use-
ful” and “necessary” only refer to goodness of fit, not to usefulness
or necessity to the observer.

Factor Usefulness: Knock-In Difference (KID)

We measure the evidence that a factor is useful as the amount by
which the goodness of fit improves relative to the base model by
adding, or “knocking in,” that factor (Figure 3A). We define the
knock-in difference based on AIC (KIDAIC) of a factor F(which
takes values G, O, D, V, or OV) as the AIC difference between
the Base model and the knock-in model with F, denoted by
“Base � F”:

KIDAIC(F) � AIC(Base) � AIC(Base � F). (20)

A positive KIDAIC means that the knock-in model fits better
than the base model, and represents evidence that the factor is
useful. Drugowitsch, Wyart, Devauchelle, and Koechlin (2016)
applied a similar analysis.

We call KID a measure of the “usefulness” of a factor and not
of its “sufficiency,” because we take “insufficiency” of a model to
refer to the deviation between the model and the true distribution
(as estimated using deviance, Wichmann & Hill, 2001; or
Kullback-Leibler divergence, Shen & Ma, 2016), which is not
what we quantify here.

Factor Necessity: Knock-Out Difference (KOD)

We measure the evidence that a factor is necessary as the
amount by which the goodness of fit of the full model (GODV)
decreases by lesioning, or “knocking out,” that factor (Figure 3B).
We define the knock-out difference based on AIC (KODAIC) of a
factor F as the AIC difference between the corresponding knock-
out model (ODV, GOV, GDV, GOD, or GD, denoted by “Full-F”)
and the full model:

KODAIC(F) � AIC(Full-F) � AIC(Full). (21)

A positive KODAIC means that the knock-out model fits worse
than the full model, and represents evidence that the factor is
necessary.

Factor Presence: Log Factor Likelihood Ratio (LFLR)

Finally, we estimate the evidence that a factor is present in the
true model underlying a subject’s behavior as the log likelihood
ratio of a factor being present versus absent, which we will refer to
as the log factor likelihood ratio (LFLR; Figure 3C). Although this
quantity reflects most objectively the degree of belief in a factor
(Van Horn, 2003), additional assumptions are needed to estimate
it. To find the marginal likelihood that a factor F is present, we
marginalize over all models M in the model space:

Factor 1

Fa
ct

or
 3

Factor 2

A
Knock-in 

(0, 0, 0)
Base

(1, 1, 1)
Full

Factor 1

Fa
ct

or
 3

Factor 2

B
Knock-out 

(0, 0, 0)
Base

(1, 1, 1)
Full

C
Posterior

Factor 1

Fa
ct

or
 3

Factor 2

actor 1a(0, 0, 0)
Base

(1, 1, 1)
Full

Figure 3. Factor importance metrics. In each diagram, each dimension represents a binary factor and each
vertex a model; we show an example with 3 factors and thus a total of 8 models. The Base model, with none
of the factors, is (0, 0, 0) and the Full model, with all factors, is (1, 1, 1). (A) Knock-in difference (KID, red
arrows): the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) difference between the
Base model (0, 0, 0) and the knock-in model with each single factor. (B) Knock-out difference (KOD, red
arrows): the AIC or BIC difference between the corresponding knock-out model and the Full model (1, 1, 1).
(C) The log factor likelihood ratio (LFLR). We compute the log likelihood ratio of a factor being present versus
absent by marginalizing over all models with or without that factor, respectively. See the online article for the
color version of this figure.
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L(F present) � p(data |F present)

� �
all models M

p(data | M)p(M |F present).

Next, we assume that the models we tested are representative, so
that the sample average is a good approximation of the theoretical
average:

L(F present) 	 �
M tested

p(data | M)p(M |F present).

Next, we assume that all models containing f are a priori equally
probable, so that

L(F present) 	 1
number of tested models that contain F

�
M tested containing F

p(data | M).

Finally, we approximate the log marginal likelihood of a given
model by �0.5 times the AIC of that model (Akaike, 1978, 1979;
Burnham & Anderson, 2002, Chapter 2.9):

L(F present) 	 1
number of tested models that contain F

�
M tested containing F

e�0.5 AIC(M). (22)

We analogously define the marginal likelihood of factor ab-
sence, and then the log factor likelihood ratio based on AIC
(LFLRAIC) as

LFLRAIC(F) � logp(data| F present)
p(data |F absent)

	 log
�

M tested containing F
e�0.5 AIC(M)

�
M tested containing F

e�0.5 AIC(M)
, (23)

where we have assumed that equal numbers of tested models
contain and do not contain F, as is the case throughout this paper.
LFLRAIC is similar to the log evidence ratio of AIC weights (E.-J.
Wagenmakers & Farrell, 2004), except that the latter is an estimate
of the log likelihood ratio between two models, instead of between
factor presence and absence.

We now discuss an important special case. If adding a factor
does not improve the unpenalized goodness of fit, which means
that the model containing the factor has the exact same LLmax as
the corresponding model without that factor, then its LFLRAIC is:

LFLRAIC(F) 	 log
�

M:F�1
eLLmax(M)�kM

�
M:F�0

eLLmax(M)�kM
� �1. (24)

Therefore, the LFLRAIC of a factor should always be higher
than �1, but in practice, it is possible to be slightly lower because
of the simulation noise.

Similarly, we could also use �0.5 BIC as an approximation of
log marginal likelihood. Then, Equations (20) to (23) would be
analogous, and the lower bound of LFLRBIC in Equation (24)
would be �4.0 (Experiments 1–7, 9, and 10), or �3.6 (Experi-
ments 8 and 11), depending on the number of trials. In practice,
BIC penalizes extra parameters by more than AIC. Therefore,
LFLRBIC is generally lower than LFLRAIC for the same factor.

To facilitate comparison with KID and KOD, we will report the
value of 2 · LFLR rather than LFLR itself, because KID and KOD
are computed with AIC or BIC while LFLR is computed with 0.5
AIC or 0.5 BIC. For each metric, a higher positive value means
more evidence that the factor is important.

Relation Between KID and KOD

While the KID and KOD metrics each have a relatively straight-
forward interpretation, the question arises what inconsistency be-
tween them could mean. Finding that a factor is important in KID
but not in KOD could indicate a “trade-off” between factors, or a
logical OR operation: The effect of knocking out one factor is
compensated for by other factors, to yield an equally good fit. Such
a “trade-off” between factors is an example of model mimicry
(Townsend, 1972; E. J. Wagenmakers, Ratcliff, Gomez, & Iver-
son, 2004) and would go away in the limit of infinite data. The
opposite is also possible: A factor is important in KOD, but not in
the KID. This could indicate an “interaction” between factors or a
logical AND operation: Neither factor is useful by itself, but their
combination is, similar to finding an interaction without main
effects in ANOVA.

Relation Between LFLR and KID/KOD

In general, we expect LFLR to be more closely related to KOD
than to KID. This is because the log-sum-exponent operation in the
calculation of LFLR, Equation (23), is similar to a max operation
(Ma, Shen, Dziugaite, & van den Berg, 2015). Thus, the marginal
likelihoods of factor presence and absence will often be dominated
by the best models with and without the factor, respectively. Take
LFLRAIC as an example. Starting from Equation (23),

LFLRAIC(F) 	 log
�

M:F�1
e�0.5 AIC (M)

�
M:F�0

e�0.5 AIC (M)
	 log

max
M:F�1

e�0.5 AIC (M)

max
M:F�0

e�0.5 AIC (M) .

If furthermore, the lowest-AIC model is the most highly param-
eterized model, then 2 · LFLRAIC becomes identical to KODAIC.

Jeffreys’ Scale

To interpret the numerical values of the factor importance
metrics, we use Jeffreys’ scale (Jeffreys, 1961; Table 3), which is

Table 3
Jeffreys’ Scale for Bayes’ Factors (Jeffreys, 1961)

Bayes factor (BF) 2 · log(BF) Interpretation

�100 �9.2 Extreme evidence for H1
30 to 100 6.8 to 9.2 Very strong evidence for H1
10 to 30 4.6 to 6.8 Strong evidence for H1
3 to 10 2.2 to 4.6 Moderate evidence for H1
1 to 3 0 to 2.2 Anecdotal evidence for H1

1 0 No evidence
1/3 to 1 �2.2 to 0 Anecdotal evidence for H0

1/10 to 1/3 �4.6 to �2.2 Moderate evidence for H0
1/30 to 1/10 �6.8 to �4.6 Strong evidence for H0

1/100 to 1/10 �9.2 to �6.8 Very strong evidence for H0
�1/100 ��9.2 Extreme evidence for H0
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commonly used to interpret Bayes factors. (One could make the
case that such categorization is unnecessary, but people are easily
seduced by categories.) We make a few modifications (Table 4):
(a) to be conservative, we are more careful with our adjectives than
Jeffreys; (b) also to be conservative, we base our interpretation on
the lowest of the Factor Importance Metrics FIMAIC and FIMBIC;
and (c) our scale is not symmetric between positive and negative
values, because FIM has a lower bound due to being based on AIC
or BIC (see Equation 24).

Results

Motivated by the visual STM literature, we searched for evi-
dence for variable precision in 11 experiments, most of which used
visual search tasks. In doing so, we tested for three factors that
could be confounded with variability in precision, namely guessing
(G), the oblique effect (O), decision noise (D), and in some cases,
suboptimal decision rules. Our approach relies on quantitative
model comparison, the results of which we summarize through
three novel “factor importance metrics,” each crossed with AIC
and BIC.

The Importance of Variable Precision (V) When
Taking Into Account Guessing (G)

Guessing, representing stimulus-independent lapses of attention
or motor errors, is a factor that has been widely accepted to be
present in psychophysical tasks, and it is routinely included in
psychometric curve fits (Wichmann & Hill, 2001). In the current
study, we started searching for evidence for variable precision by
only considering G. We get four models: base model with no
factors (base), variable precision model (V), fixed precision with
guessing (G), and variable precision with guessing (GV). We
applied all six factor importance metrics to this model set.

In most experiments (Experiments 1, 3, 5, 6, 7, 9, 10, and 11),
mean KIDAIC(V) and mean KIDBIC(V) were both greater than 9.2
(Figure 4A), indicating very strong evidence that factor V is useful
to explain the data. This is consistent with the model fits to the
psychometric curves. (Figure 4D, Figures B1, B3, B5, B6, B7, B9,
B10, panel B in Appendix B, compare the base and V models. The
numbers of the Figures 1 to 11 in Appendix B correspond to the
experiment numbers). In Experiments 2 and 4, KIDAIC(V) and
KIDBIC(V) were much smaller, indicating little or no evidence that
factor V is useful.

In Experiments 7, 9, 10, and 11, mean KODAIC(V) and mean
KODBIC(V) were both greater than 9.2, indicating very strong
evidence that factor V is necessary to explain the data (Figure 4B).

This is consistent with the model fits to the psychometric curves
(Figure 4E, Figures B7, B9, B10, and panel B in Appendix B,
compare the G and GV models). In Experiment 8, KOD(V) was
12.1 � 4.3 (AIC) and 6.9 � 4.3 (BIC), indicating strong evidence
that factor V is necessary (Figure 4B). In Experiments 1–6, how-
ever, mean KODAIC(V) and mean KODBIC(V) were both lower
than 4.6, indicating little or no evidence that factor V is necessary.
The large difference between KID(V) and KOD(V) in Experi-
ments 1, 3, 5, and 6 arose because factor G could also explain the
data well, as indicated by a high KID(G; Figure 4A) and illustrated
by the model fits (Figures 4D, A1, A3, A5, A6).

Using LFLR, we found very strong evidence for the presence of
factor V in Experiments 7, 9, 10, and 11, with mean 2 · LFLPAIC(V)
and mean 2 · LFLPBIC(V) both greater than 9.2 (Figure 4C). We also
found strong evidence for the presence of factor V in Experiment 8,
with a 2 · LFLP(V) equal to 12.7 � 4.4 (AIC) and 7.8 � 4.5 (BIC).
The common feature of these five experiments was that distractors
were variable across trials. In Experiments 7 and 8, the distractors
were homogenous within a trial, while in Experiments 9–11, distrac-
tors were heterogeneous within a trial. We found little or no evidence
for factor V in Experiments 1–6, with mean 2 · LFLPAIC(V) and
mean 2 · LFLPBIC(V) both smaller than 4.6. The common feature of
these experiments was that there were either no distractors (Experi-
ments 1–4), or fixed distractors (Experiments 5–6).

Overall, with consideration of guessing, we found evidence for
the presence of variable precision to be very little in Experiments
1–6, strong in Experiment 8, and very strong in Experiment 7 and
9–11.

How do these results compare to the visual STM literature? The
analog of a comparison between the G and V models has been
made in several visual STM experiments (D. T. Devkar et al.,
2015; Keshvari et al., 2012, 2013; van den Berg et al., 2012), with
V fitting better. In one article, GV was compared with G, with GV
fitting better (Fougnie et al., 2012; van den Berg et al., 2014).
Finally, in one article, a form of GV (there called VP-F) was
compared with both V (VP-A) and a form of G (EP-F), with GV
fitting best; however, the guessing was set size-dependent in a
specific way (dictated by an item limit; Fougnie et al., 2012; van
den Berg et al., 2014). All these results were obtained in experi-
ments with multiple set sizes and “heterogeneous distractors,”
most similar to our Experiments 10 and 11. Indeed, the results are
consistent with ours in those experiments.

The Importance of Variable Precision (V) When
Taking Into Account Guessing (G) and the Oblique
Effect (O)

Although we found evidence for variable precision (V) in Ex-
periments 7–11 when considering G, some of the variability could
be explained by other confounding factors. We first considered the
oblique effect (O), the phenomenon that oblique orientations are
encoded with lower precision than cardinal ones (Appelle, 1972;
Girshick et al., 2011; Pratte et al., 2017). We implemented O using
a rectified sine function (Figure 2B and Equation 4).

Inclusion of factor O did not qualitatively change the impor-
tance of factor V in Experiments 1– 8 and 11 (Figure 5A–C).
However, it greatly reduced the importance of factor V in
Experiments 9 and 10. KOD(V) was 4.4 � 3.3 (AIC) and �1.6

Table 4
Jeffreys’ Scale Adapted for Our Three Factor Importance
Metrics (FIMs)

min(FIMAIC(F), FIMBIC(F)) Interpretation

�9.2 Very strong evidence that F is important
6.8 to 9.2 Strong evidence that F is important
4.6 to 6.8 Moderate evidence that F is important

�4.6 (including � 0) Little or no evidence that F is important

Note. “Important” can mean “useful” (KID), “necessary” (KOD), or
“present” (LFLR).
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Figure 4. Factor importance: guessing (G) and variable precision (V). Here and in other factor importance plots,
dashed black lines mark the boundaries of our interpretation of the strength of the evidence (�9.2: very strong, �6.8:
strong, �4.6: moderate). (A–C) Mean and SEM of Knock-In Difference (KID) (A), Knock-Out Difference (KOD)
(B), and 2 � LFLR (C) based on Akaike Information Criterion (AIC) (top) or Bayesian Information Criterion (BIC)
(bottom) for the factors G and V in all experiments. (D) Model fits to the proportion of reporting “right” as a function
of target orientation in Experiment 1. In all model fit plots, we use error bars and shaded areas to represent �1 SEM
in the data and the model fits, respectively. The G, V, and GV models fit the data equally well, and better than the
Base model. (E) Model fits in Experiment 9. The V and GV models fit the data almost equally well, and better than
the Base and G models. See the online article for the color version of this figure.
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� 3.3 (BIC) in Experiment 9, and 6.7 � 2.7 (AIC) and 0.7 �
2.7 (BIC) in Experiment 10 (Figure 5B), indicating little or no
evidence that factor V is necessary. Consistently, 2 · LFLP(V)
was 5.4 � 3.5 (AIC) and 0.9 � 4.4 (BIC) in Experiment 9

(Figure 5C), indicating little or no evidence for the presence of
factor V. 2 · LFLP(V) was 8.5 � 2.9 (AIC) and 6.4 � 3.3 (BIC)
in Experiment 10 (Figure 5C), indicating moderate evidence for
the presence of factor V.
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Figure 5. Factor importance among guessing (G), oblique effect (O), and residual variable precision (V). The
red (grey) dashed box marks the major changes (compared with Figure 4) in the evidence for the importance of
factor V when taking factor O into consideration. (A–C) Mean and SEM of Knock-In Difference (KID) (A),
Knock-Out Difference (KOD) (B), and 2 · LFLR (C) based on Akaike Information Criterion (AIC; top) or
Bayesian Information Criterion (BIC; bottom) for the factors G, O, V, and the OV combination, in all
experiments. (D) Model fits in Experiment 9. The O, V, and OV models fit the data almost equally well, and
better than the base model. See the online article for the color version of this figure.
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In Experiments 9 and 10, evidence for the presence of factor V
was reduced because factor O could also explain the data well.
KID(O) was 70 � 21 (AIC) and 64 � 21 (BIC) in Experiment 9,
and 44 � 10 (AIC) and 38 � 10 (BIC) in Experiment 10 (Figure
5A). This can also be seen in the model fits of model O (Figure
5D). However, knocking out factor O did not cause large changes
in AIC or BIC: KOD(O) was 9.8 � 6.3 (AIC) and 3.8 � 6.3 (BIC)
in Experiment 9, and 3.7 � 1.5 (AIC) and �2.3 � 1.5 (BIC) in
Experiment 10 (Figure 5B), indicating little or no evidence that
factor O is necessary. Knocking out both factors O and V was
disastrous, resulting in a KOD(OV) of 64 � 18 (AIC) and 52 � 18
(BIC) in Experiment 9, and of 34.5 � 8.7 (AIC) and 22.5 � 8.7
(BIC) in Experiment 10 (Figure 5B). This “nonlinear” phenome-
non seemed to occur because factors O and V could stand in for
each other in explaining the data, therefore neither was necessary,
but having at least one of them was important. This is consistent
with the model fits to the psychometric curves (Figure 5D, Ap-
pendix Figures B9A, B10B). Consistently, 2 · LFLR was not high
for either factor O or factor V, but was high for their combination:
65 � 18 (AIC) and 56 � 19 (BIC) in Experiment 9, and 36.9 �
9.0 (AIC) and 27.2 � 9.4 (BIC) in Experiment 10 (Figure 5C).

In the visual STM literature, Pratte et al. (2017) compared
models similar with G, V, GV, GO, OV, and GOV; again however,
the guessing was set size-dependent in a specific way (dictated by
an item limit). They found that V fitted better than G but worse
than GV. Adding factor O flipped the first result: GO fitted better
than OV; however, both still fitted much worse than GOV. Al-
though they did not test the base and O models, this last result
suggests evidence for the presence of V. The experiments by Pratte
et al. (2017) were again most similar to our Experiments 10 and
11, featuring multiple set sizes and heterogeneous distractors. In
Experiment 10, we also found that accounting for factor O changed
our evidence for the presence of factor V (V fitted better than G
but GO fitted as well as OV, Appendix B Figure B10), and (using
LFLR) we found moderate evidence for the presence of V. In
Experiment 11, considering factor O did not change our evidence
for the importance of factor V, and we still found strong evidence
for the presence of factor V.

The Importance of Variable Precision (V) When
Taking Into Account Guessing (G), the Oblique Effect
(O), and Decision Noise (D)

Besides guessing and the oblique effect, another confounding
factor might be noise in the decision stage (or suboptimal infer-
ence, which can look like decision noise). We examined evidence
for the importance of V when accounting for guessing (G), the
oblique effect (O), and decision noise (D). We modeled D as
Gaussian noise added to the log posterior ratio (Equation 17).

In Experiments 1–10, the inclusion of factor D did not change
the evidence for the importance of factor V much (Figure 6A–C).
In Experiment 8, evidence for the presence of factor V changed
from strong to moderate (Figure 6C). In Experiment 10, the
inclusion of factor D slightly reduced the evidence for the presence
of factor V. 2 · LFLP(V) was 2.3 � 2.3 (AIC) and 1.9 � 3.3 (BIC),
indicating little or no evidence for the presence of factor V (Figure
6C).

In Experiment 11, however, the inclusion of D greatly reduced
the importance of factor V. KODAIC(V) and KODBIC(V) were

negative (Figure 6B), indicating no evidence that factor V is
necessary. Consistently, 2 · LFLP(V) was �0.6 � 1.6 (AIC) and
0.7 � 3.4 (BIC) in Experiment 11 (Figure 6C), indicating little or
no evidence for the presence of factor V. The reason is probably
that factor D can also explain the data: KID(D) was 60 � 14 (AIC)
and 55 � 14 (BIC; Figure 6A), consistent with the model fits of the
D model (Figure 7). However, knocking out factor D did not cause
large KODs (Figure 6B), suggesting that factor D is useful, but not
necessary.

In summary, when accounting for guessing, the oblique effect,
and decision noise, we only found very strong evidence for the
presence of the residual variable precision in Experiment 7. Ex-
periment 7 was the only orientation categorization task in which
the distractors were homogeneous but varied across trials. In
Experiment 8, which was a target detection task also with homo-
geneous variable distractors, we found moderate evidence for
residual variable precision, suggesting that homogeneous variable
distractors might induce residual variable precision.

To our knowledge, no previous studies have compared models
containing all four factors G, O, D, and V.

Relationship Between Task Features and Importance
of Factors Other Than the Residual Variable Precision

The variation of the designs of our experiments also enables us
to relate the features of tasks to the importance of factors other
than the residual variable precision. The experiments differed in
the following design features (Table 5): set size greater than 1
(divided attention), set size variability, number of targets greater
than 1, task type (categorization or detection), the distribution of
the target orientation, the distribution of the orientation of the
reference (Experiment 2) or the distractors (all other experiments),
distractor variability across displays, distractor variability within
displays, and the presence of ambiguity (in the form of overlapping
target-distractor category distributions).

By examining the importance of factors in all these 11 experi-
ments, we found that some factors were important when certain
features were present. We now summarize the evidence for the
importance of each factor across experiments and attempt to make
a connection to the features of the experiments; Table 5 lists the
evidence for the presence of each factor (2 · LFLR) in each exper-
iment.

Guessing (G)

Consistent with the notion that guessing is widespread in
psychophysical tasks, we found that in many experiments (Ex-
periments 1, 3, 5, 6, 7), KID(G) was greater than 9.2 (Figure
6A) and the G model provided clearly better fits to the psycho-
metric curves than the base model (Figure 8A, Figures B1, B3,
B5, B6, B7, panel B in Appendix B). Among these experiments,
in Experiment 6, factor G was necessary (Figure 6B) and had
2 · LFLR of 13.1 � 6.4 (AIC) and 12.3 � 7.9 (BIC; Figure 6C),
indicating very strong evidence for the presence of factor G. In
this experiment, the target orientation took values be-
tween �20° and 20°, which was the largest range among all
experiments. Moreover, set size could be low (1 or 2). A
mistake on a trial with low set size and a strongly tilted target
could only be explained by guessing. In Experiment 5, in which
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the stimulus range was the same but set size was equal to 4,
factor G was no longer necessary, but 2 · LFLR(G) was 5.7 �
2.1 (AIC), and 5.1 � 2.2 (BIC), respectively, indicating mod-
erate evidence for the presence of factor G. Across all experi-
ments, it seems that the larger the proportion of easy trials, the
higher the evidence for the importance of factor G. With fewer
easy trials, models without factor G fitted the data equally well
as models with factor G, by estimating a lower encoding pre-
cision (Figure 8A). For example, in Experiment 4, where the
target orientation range was narrow (between �5° and 5°), the
base model fitted as well as the G model, but the estimated
precision was lower.

Oblique Effect (O)

We expected that factor O would be easier to detect when the
stimulus distribution covered a larger orientation range. Indeed, we
found very strong evidence for the presence of factor O in Exper-
iment 2 and strong evidence in Experiment 9 (Figure 6C), in which
the stimulus distribution covered the entire orientation space (Fig-
ure 1, Experiment 2, Experiment 9). This can also be seen in the
model fits (Figure 8B). In Experiments 10 and 11, however,
although the distractor distribution also covered the entire space,
the evidence for factor O was weak. In Experiment 10, this might
be because the experiment also contained a set size 1 condition, in
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Figure 6. Factor importance: guessing (G), oblique effect (O), decision noise (D) and the residual variable
precision (V). The red (grey) dashed box marks the major changes (compared with Figure 5) in the evidence for
the importance of factor V when taking factor D into consideration. (A–C) Mean and SEM of Knock-In
Difference (KID) (A), Knock-Out Difference (KOD) (B), and 2 · LFLR (C) based on Akaike Information
Criterion (AIC; top) or Bayesian Information Criterion (BIC; bottom) for the factors G, O, D, V, and the OV
combination, in all experiments. See the online article for the color version of this figure.
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which there were no distractors. In Experiment 11, stimuli with
large tilts were informative of factor O, but because of the task
structure, these stimuli were weighted less in the optimal decision
rule (Appendix A, Experiment 11), therefore perhaps making
factor O harder to detect. Furthermore, because strongly tilted
stimuli were less relevant to the task, subjects may have paid less
attention to them. The weak evidence for the presence of factor O
is consistent with previous findings that the oblique effect is
weaker when stimuli are unattended (Kelly & Matthews, 2011;
Takács, Sulykos, Czigler, Barkaszi, & Balázs, 2013).

Decision Noise (D)

Decision noise might reflect random variability or systematic
suboptimality in the decision stage (Beck et al., 2012). We found
little or no evidence for the presence of factor D in any of our
experiments (Figure 6C). This is consistent with the conclusion of
our previous article (Shen & Ma, 2016), where we compared many
suboptimal decision rules with the optimal rule in an orientation
categorization task (Experiment 7 in this article) and found that the
more similar a suboptimal rule was to the optimal rule, the better
it fitted the data. However, the lack of evidence for factor D might
be a result of factor or parameter trade-off, which we will illustrate
in the following section.

Causes for False Negatives

Overall, we were conservative when claiming evidence for a
certain factor. Therefore, there were many “negative” results.
Some of these results could be false negatives, where a factor was
present but not detected. One potential source of false negatives is
a lack of informative trials for an individual factor. For example,
easy trials on the ends of the psychometric curve tend to be
informative about the presence of guessing; thus, having too few
easy trials may have prevented us from detecting guessing. Sim-
ilarly, a narrow orientation range may have prevented us from
detecting the oblique effect. A second potential source is trade-offs

between parameters. For example, a nonzero guessing rate can be
mimicked by a zero guessing rate and a lower (mean) precision
parameter. To illustrate this trade-off, we generated a synthetic
data set with the G model for Experiment 4, with a precision of
0.08 deg�2 and a guessing rate of 0.02, and computed the log
likelihood with different combinations of precision and guessing
rate in the G model. Different combinations of precision and
guessing rate fit the data equally well, including a precision with
0 guessing rate (Figure 9A). In such a scenario, the LLmax of the
with-factor model (G) could be identical to the LLmax of the
without-factor model (base) even though the factor is present. In
another example, in Experiments 9–11, V might trade off against
O and/or D, and the weaker evidence for factor V might be due to
stronger evidence for factors O (Experiments 9 and 10) or D
(Experiment 11). To illustrate this scenario, we generated a syn-
thetic data set with the V model for Experiment 9, with a scale
parameter � � 0.05, and computed the log likelihood of different
combinations of � and 
 of the OV model. A combination of zero

 and the true � fit as well as different combinations of a nonzero

 and a smaller � (Figure 9B). A smaller fitted � indicated weaker
evidence for factor V, because the data were partly explained by
the factor O. Trade-offs can happen with any model comparison
metric, but AIC and BIC are specifically known to be insensitive
to trade-offs between factors (Gelman, Hwang, & Vehtari, 2014).

Suboptimality

So far, we have only considered the optimal decision rule in our
models. However, the possibility that the observer uses a subop-
timal decision rule must be considered, as it could change our
conclusions.

In models based on signal detection theory, it is common to
consider “simple heuristic” rules (although simplicity is hard to
define). A well-known example is the max rule (Baldassi & Burr,
2000; Eckstein, 1998; Green & Swets, 1966; Nolte & Jaarsma,
1967; Palmer, 1990). A second way to construct suboptimal rules
is more principled. An assumption behind the optimal rule is that
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Figure 7. Model fits in Experiment 11. Proportion of reporting “target present” as a function of set size (left)
and the smallest circular distance (right) in orientation space between the target and any of the distractors. Target
present trials and target absent trials are shown with blue (dark grey) and red (light grey), respectively. The D
and V models fit the data almost as well as the full model, and better than the O model. See the online article
for the color version of this figure.
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the observer has learned and correctly incorporates the experimen-
tal statistics, in our case the joint distribution p(C, s). This assump-
tion is common in Bayesian modeling of perception and often
justified by arguing that the stimulus distribution is simple enough
for subjects to learn quickly (e.g., Gaussian or uniform). The
assumption is to some extent validated by the success of the
resulting models (Geisler, 2011). However, in some cases, there is
evidence that observers do not use accurate estimates of the
parameters of the stimulus distribution (Acerbi, Ma, & Vijayaku-
mar, 2014; Honig, Ma, & Fougnie, 2018), or instead use natural
statistics (Adams, Graf, & Ernst, 2004; Girshick et al., 2011; Zhu
& Ma, 2017).

In the present section, we undertake a limited exploration of
both kinds of suboptimality.

Heuristic Decision Rules in Experiment 7

In the article where Experiment 7 was originally presented
(Shen & Ma, 2016), we compared the optimal decision rule against
24 suboptimal rules, including “simple heuristic” rules such as the
Max rule; however, of the four factors G, O, D, and V, we only
included factor G. In the present article, we tested all factors, but
so far assumed an optimal decision rule. Considering the subop-
timal rules and all models in the “GODV family” simultaneously
could in principle undermine the conclusions of both studies: First,
if a suboptimal rule that fitted poorly in Shen and Ma (2016) were
to fit the data substantially better when combined with a different
model in the GODV family, that could change the conclusions of
that article. Second, if a model without factor V in the GODV
family were to fit the data substantially better when combined with
a suboptimal rule, it would imply a change in the evidence for
factor V in the current article.

To examine these possibilities, we crossed the suboptimal rules
from Shen and Ma (2016) with all members of the GODV family
in the current study, eliminating logically inconsistent combina-
tions. This led to 292 extra models (Figure 10A, for a more
detailed description, see Appendix C). The results confirmed the
conclusions from Shen and Ma (2016) that human behaviors are
closer to optimality than to simplicity in this task (Figure 10A,
Appendix B Figure B12): Regardless of which GODV family
member the decision rule was crossed with (a) simple rules (Class
I and Class II) fitted the data worse than the optimal decision rules,
with mean AIC or BIC differences greater than 40; and (b) the
more similar a suboptimal rule was to the optimal rule, the better
it fitted the data (Figure 10A). By contrast, considering the sub-
optimal decision rules in Experiment 7 changed the earlier con-
clusion of the current paper about the presence of factor V. We
computed 2 � LFLRAIC(V) and 2 � LFLRBIC(V) by marginaliz-
ing over all models, including those with a suboptimal decision
rule (Figure 10B). The evidence for the presence of factor V
decreased to 2.1 � 1.1 (AIC) and 0.3 � 1.6 (BIC). Thus, the strong
evidence we found for factor V in Experiment 7 disappeared when
considering suboptimal decision rules.

A Heuristic Decision Rule in Experiments 9 and 10

In Experiments 9 and 10, the distribution of the target orienta-
tion was narrower than that of each distractor orientation. There-
fore, an intuitive alternative to the optimal decision rule is to report
the tilt of the least tilted stimulus. Following Shen and Ma (2016),T
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we call this rule the “Min” rule. This rule is not just intuitive but
can also be considered a Bayesian “two-step” rule: first pick the
target by maximizing p(L |x), where L is the hypothesized target
location, and then report the tilt at the best location L̂, which is
equivalent to maximizing p(C | L̂). It turns out that the best
location L̂ is the location of the least tilt stimulus. Here we will
give an intuitive example to show the difference between the
optimal rule and the Min rule. For a set of measurements [�5°,
2°, �15°, �85°], the Min rule would simply report “right”
because of the 2° measurement. By contrast, the optimal rule

would take into account both uncertainty over target location
and uncertainty due to sensory noise. Uncertainty over target
location: although �5° and �15° do not have the minimum tilt,
it is well possible that one of them came from the target
distribution. Uncertainty due to sensory noise: suppose 	 � 3°.
Then, even if the 2° measurement came from the target, the
evidence that the target tilts right would not be very high.
However, if �5° or �15° were the target, the evidence that the
target tilts left would be higher. Therefore, the optimal
decision-maker would report “left” in this case.
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Figure 10(opposite)
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We tested combinations between the Min rule and all models in
the GODV family in both Experiment 9 and 10. We found that the
Min rule fitted much worse than the optimal rule regardless of the
GODV family member it was crossed with (Figure 11A, C). This
result suggests that subjects do not use the Min rule in these two
experiments. Consistently, considering both optimal rule and Min
rule did not change the evidence for the presence of factors in
Experiments 9 and 10 (Figure 11B, D).

Incorrect Assumption About the Stimulus Statistics in
Experiment 5

In Experiments 1 and 3–6, where the orientation of the target
was discrete, we did not model the prior over target orientation as
the true target orientation distribution, because it is unlikely that
subjects learned a dense, discrete distribution. Instead, we modeled
the prior to be a zero-mean Gaussian distribution with the same
standard deviation of the true distribution (Equation 6), which was
a form of suboptimality. Alternatively, we could assume a boxcar
prior of the target distribution that covered the orientation range of
the true distribution. We tested all GODV family members with
this prior and compared the results to the GODV family members
with the Gaussian prior in Experiment 5. We found that both AIC
and BIC were similar between the Gaussian prior and the boxcar
prior (Figure 12A), and changing the prior did not change the
evidence for the factors (Figure 12B). This result suggests that our
conclusions are not sensitive to what prior we use when the target
orientation is discrete.

Although our results in Experiment 5 were not sensitive to the
class-conditioned stimulus distributions we assumed, we cannot in
general rule out mismatch between the stimulus statistics assumed
by the observer and the true ones, and we cannot rule out that such
mismatch would affect our conclusions about the presence of the
factors.

Relationship Between Mean Precision and Set Size

Experiments 4, 6, 8, 10, and 11 used multiple set sizes, allowing
us to explore the effects of task on the relationship between mean
precision and set size. Mean precision, as estimated in the full
model, decreased strongly with set size in Experiments 8, 10, and
11 (repeated-measures ANOVAs: p � .05); in these experiments,
the distractors were variable across trials. There were no obvious
differences between detection (Experiments 8 and 11) and catego-
rization (Experiment 10). There was no significant effect of set
size in Experiment 6, F(3, 6) � 1.1, p � .38, where the distractors
were fixed at vertical (Figure 13). In Experiment 4, all stimuli were
targets but with an orientation that was unpredictable across trials.

Although performance increased with set size (Appendix B Figure
B13A; F(3, 6) � 7.25, p � .01), because more stimuli gave more
information about the correct answer, we found that mean preci-
sion decreased with set size (Figure 13; F(3, 6) � 4.18, p � .013).
Given the weak evidence found for factor G in Experiment 4, we
also estimated the precision with the ODV model, but the set size
effect was similar (Appendix B Figure B13B: F(3, 6) � 6.07, p �
.01).

Experiments 8 and 11 were from Mazyar et al. (2013; Experi-
ment 2 and Experiment 1, respectively), and even though there
were minor differences between the models, the relationship be-
tween mean precision and set size was very similar as in the
original paper. An earlier article (Mazyar et al., 2012) considered
one more visual search condition. When the distractors were fixed
at 5°, mean precision was constant across different set sizes. Based
on the results of both studies, the latter article hypothesized that
mean precision decreases with set size if the distractors are un-
predictable across trials. The results from Experiments 6 and 10
are broadly consistent with this conclusion. However, the design of
Experiment 4 was not covered by this hypothesis: There were no
distractors but yet we found a significant effect of set size. A
unifying hypothesis could be that the less predictable the entire
stimulus display is across trials, the stronger the decrease of mean
precision with set size. However, in all of this, one needs to keep
in mind the possibility that the estimates of the precision param-
eters are affected by trade-offs with guessing (Figure 9A).

Ultimately, it would be more satisfactory to have a normative
explanation: Why does mean precision decrease with set size to
different extents for different stimulus statistics? One recent pro-
posal is that set size effects are due to an optimal trade-off between
behavioral performance and the neural costs associated with stim-
ulus encoding (van den Berg & Ma, 2017). Greater predictability
might allow for more efficient neural coding, which would lead to
savings in neural cost, and that in turn would lead to a weaker set
size effect.

Discussion

Summary

We asked whether variable precision exists in visual perception.
Specifically, we varied the complexity of the distractor context.
We analyzed data from 11 visual experiments that used very
similar oriented stimuli, and performed factorial model compari-
son with six factor importance metrics. Overall, we found little
evidence for residual variable precision (V) when accounting for
guessing (G), the oblique effect (O), and decision noise (D). In

Figure 10 (opposite). Crossing the suboptimal decision rules with the factor models in Experiment 7. (A) The x-axis lists GODV family members, and
the y-axis lists different decision rules from Shen and Ma (2016). Decision rules marked in bold face are the rules similar to the Opt rule (Shen & Ma, 2016).
The color of the dot represents the Bayesian Information Criterion (BIC) of a hybrid model with a certain decision rule and factor model. Some
combinations are missing because those models are invalid (Appendix C). Akaike Information Criterion (AIC) version of the results is shown in Appendix
Figure B12. (B) Mean and SEM of 2 · LFLR based on AIC (left) or BIC (right) for factors G, O, D, V, and the OV combination in Experiment 7. Blue
bars: only models with the optimal decision rule are included. Yellow bars: all models except for those crossed with the Sign rule and SumX rules are
included; we marginalized over decision rule in the same way as we marginalized over the “missing” GODV factors. See the online article for the color
version of this figure.
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Figure 11. Comparing the optimal with the Min rule in Experiments 9 and 10. (A) Mean and SEM of the
difference in Akaike Information Criterion (AIC; top) and Bayesian Information Criterion (BIC; bottom)
between each model and the full-opt model in Experiment 9. Blue (dark grey) bar: models with the optimal
decision rule. Yellow (light grey) bar: models with the Min decision rule. (B) Mean and SEM of 2 · LFLR
based on AIC (left) or BIC (right) for the factors G, O, D, V, and the OV combination in Experiment 9.
Blue (dark grey) bars: only models with the optimal decision rule are included. Yellow (light grey) bars:
all models are included; we marginalized over decision rule (Opt/Min) in the same way as we marginalized
over the “missing” GODV factors. (C–D) Same as (A–B), but for Experiment 10. See the online article for
the color version of this figure.
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Experiments 7–11, if we had only considered factors G and V, we
would have claimed evidence for the presence of factor V. How-
ever, when we considered factors O and D as well, the evidence
weakened in Experiment 8 and disappeared in Experiments 9–11
(consistent with findings by Pratte et al. (2017) that were obtained

without factorial model comparison). Evidence for the presence of
factor V remained strong in Experiment 7, but then disappeared
when considering suboptimal decision rules. Thus, we are not
convinced that precision is ever variable in visual perception. On
the positive side, this means that modelers of visual perception
might not be making a major mistake when they do not include
variable precision in their models.

Why Did We Not Get Stronger Results?

Group evidence. We quantified all evidence for models or
factors by taking the average of AIC, BIC, or derived metrics over
subjects. Instead, we could have summed (K. E. Stephan, Marshall,
Penny, Friston, & Fink, 2007). We deliberately did not do so, because
the underlying assumption would have been that all subjects follow
the same model, which is of which we are not convinced. A solution
could have been to do group Bayesian model selection (Rigoux,
Stephan, Friston, & Daunizeau, 2014; Stephan, Penny, Daunizeau,
Moran, & Friston, 2009), which marginalizes over assignments of
subjects to models. However, we did not trust this method given the
low numbers of subjects and large numbers of models in our exper-
iments. Therefore, we decided to describe evidence in an even more
conservative way, namely by averaging over subjects. This approach
has led us to conclusions that are certainly more cautious than if we
had summed evidence, and probably more cautious than if we had
used group Bayesian model selection.
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Figure 12. Comparing models with a Gaussian prior and a boxcar prior over orientation in Experiment 5. (A)
Mean and SEM of the difference in Akaike Information Criterion (AIC; top) and Bayesian Information Criterion
(BIC; bottom) between each model and the full-Gaussian prior model in Experiment 5. Blue (dark grey) bars:
models with a Gaussian prior. Yellow (light grey) bar: models with a boxcar prior. (B) Mean and SEM of
2 · LFLR based on AIC (left) or BIC (right) for the factors G, O, D, V, and the OV combination in Experiment
5. Blue (dark grey) bar: models with a Gaussian prior. Yellow (light grey) bars: models with a boxcar prior. See
the online article for the color version of this figure.
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effect of set size is significant in all experiments except Experiment 6. See the
online article for the color version of this figure.
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Experimental design. We did not optimize our stimulus de-
sign for our main question of whether residual variable precision is
present. For example, we could have calculated the target or
distractor distribution width that would have had the highest ex-
pected information gain about the presence of factor V, by simu-
lating large numbers of synthetic data sets. However, it is not clear
whether this would have helped a lot, and moreover, it would have
depended on the assumptions of subject parameters. In addition,
asking subjects to report their confidence could increase model
identifiability (van den Berg et al., 2017).

Relation to Previous Work

Relation to work on visual STM (VSTM). Recent studies that
claimed to find evidence for variable precision in VSTM (D. T.
Devkar et al., 2015; Fougnie et al., 2012; Keshvari et al., 2012, 2013;
van den Berg et al., 2012) did not take into account all confounding
factors that we considered here: guessing, heteroskedasticity and
decision noise. This raises the question of how much residual vari-
ability is present in VSTM when accounting for all confounding
factors. Given that we found little evidence for residual variable
precision in our perceptual tasks, we are left with two possibilities.
First, if we still consider residual variability in precision as an estab-
lished phenomenon in visual working memory, then our study has
made several proposed explanations that are not memory-related,
such as variability in spike counts for a given gain (Bays, 2014),
fluctuations in attention (Cohen & Kohn, 2011; Cohen & Maunsell,
2009), shifts in attention (Lara & Wallis, 2012), less likely. However,
it is also possible (and we believe more likely) that the evidence for
residual variable precision in visual working memory is not nearly as
strong as we originally believed. In visual working memory tasks that
previously claimed evidence for factor V, confounding factors are
usually not considered (Pratte et al., 2017, being a notable exception).
Thus, we consider our work as reason to reconsider the evidence for
factor V in STM in the future.

In color STM, estimation precision was found to be much higher
for some color configurations than for others, beyond what would be
expected from heteroskedasticity (Brady & Alvarez, 2015). This
raises the possibility that stimulus context is critical for residual
variable precision. In the present work, however, we did not find
evidence for the presence of factor V even when the stimulus con-
figuration was very different across trials (in Experiments 7–11). One
possible explanation for this discrepancy is that delayed estimation
might be more sensitive to the presence of residual variable precision
than our binary categorization task. Unfortunately, delayed estimation
is not easily adapted to a purely perceptual setting. Another possibility
is that residual variability in precision is greater in working memory
than in perception.

Relation to work on discriminating noise in different stages.
Previous work has characterized noise in human behavior with
various approaches. In contrast to detection studies, varying ex-
ternal noise allows one to estimate internal noise (Burgess et al.,
1981; Liu et al., 1995; Pelli & Farell, 1999). In Burgess, Wagner,
Jennings, and Barlow (1981; Pelli & Farell, 1999), this method is
based on a linear relationship between threshold signal energy
and noise energy. They then define the intercept to be the
“internal noise” and the slope to be the “sampling efficiency.”
The “internal noise” roughly corresponds to sensory noise in our
framework, although the noise in the decision stage would also

contribute. “Sampling efficiency” characterizes how close to op-
timal the decoder is, for example, how well matched Gabor filters
are to the stimulus.1Like other forms of suboptimality, low sam-
pling efficiency could cause more variability in behavior; in our
models, it would be absorbed into decision noise (Beck et al.,
2012). More recently, Cabrera et al. (2015) developed an extension
of signal detection theory framework to separately estimate encod-
ing noise and decision noise. They found that in a visual detection
confidence rating experiment, the decision noise is negligible
when there are 2 or 3 response alternatives, which is consistent
with our low evidence for decision noise.

Using Bayesian modeling, Drugowitsch et al. (2016) distinguished
sources of suboptimality in an evidence accumulation task. The fac-
tors they tested included encoding noise, inference noise, selection
noise, and deterministic biases. Their encoding noise was equivalent
to ours (without O or V). Their inference noise and selection noise
were both forms of decision noise, with the former being added at
each time step and the latter only once at the end; in our work, these
are indistinguishable. They compared models that each had one form
of noise with the Base model without noise, similar to our knock-in
analysis. They found that a model with inference noise explains the
data best. However, they did not do full factorial model comparison
and did not compute evidence of factor presence; therefore, their
results cannot immediately be compared with ours.

Factor Importance in Factorial Model Comparison

Apart from our scientific question, some of the model comparison
methods we used might be useful in other contexts. Although, facto-
rial model comparison (Acerbi, Vijayakumar et al., 2014; van den
Berg et al., 2014) helps avoid biases and oversights when deciding
which models to compare, its drawbacks include model proliferation
and model nonidentifiability. Model proliferation is the phenomenon
that the number of models rises exponentially in the number of factors
(van den Berg et al., 2014). For example, in Experiment 7, we tested
a total of 308 models. This large number of models makes it chal-
lenging to sensibly summarize the conclusions of the model compar-
ison. Moreover, many models will be difficult to distinguish, or in
other words, they will be nonidentifiable (Lehmann & Casella, 1998,
Definition 1.5.2; Acerbi, Ma et al., 2014; Shen & Ma, 2016; van den
Berg et al., 2014).

Both problems might be alleviated by focusing on the evidence that
a factor is important, rather than on the evidence for a specific model.
Van den Berg et al. (2014) summarized the results of their factorial
model comparison into evidence curves for factors. Here, we intro-
duced three new metrics of factor importance: KID, KOD, and LFLR.
All three can be directly computed from the evidence for individual
models. LFLR is the most principled and reflects the evidence that a
factor is present. However, we made several assumptions in calculat-
ing it: that the models tested are “representative”, that all models have
equal prior probabilities conditioned on factor presence or absence,
and that log marginal likelihood can be estimated from AIC or BIC.
All these assumptions should be questioned, and the toolkit for quan-
tifying evidence for factor importance will need to be further refined.

1 Confusingly, Liu et al. (1995) also measure “efficiency” by varying the
external noise, but in their terminology, any form of inefficiency is purely
a consequence of the internal noise.
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Appendix A

Decision Rules

Following the theory part, all decision rules can be derived from
Equations (9) and (10). In Equation (10), p(x |s) is evaluated in either
Equation (1) or (2). We now specify the evaluation of p(s |C) for each
experiment.

Notation:
sT: target orientation
sD or sD: distractor orientation or distractor orientation vector
xT: internal measurement of the target
xref: internal measurement of the reference
xi: internal measurement of the ith stimulus
	i: measurement noise of the ith stimulus, standard deviation of

the Gaussian distribution
	T: measurement noise of the target stimulus, standard deviation

of the Gaussian distribution
	ref: measurement noise of the reference stimulus, standard

deviation of the Gaussian distribution
	s: standard deviation to generate the stimulus orientations
Ji: encoding precision of the ith stimulus
Js: precision to generate stimulus orientations

�i: concentration parameter of Von Mises distribution of the ith
stimulus

�s: concentration parameter of the Von Mises distribution to
generate stimulus orientations

�T: concentration parameter of the Von Mises distribution to
generate target orientations

L: hypothesized target location
N: set size
pright, pclockwise, or ppresent: prior probability of reporting “right,”

“clockwise,” or “present”
�(x): standard normal cumulative function
�(x): Dirac delta function
N(x; �, 	2): Gaussian distribution with a mean of � and a

variance of 	2

H(x): Heaviside step function
U(a, b): uniform distribution in a range between a and b.
VM(x; s, �): Von Mises distribution with a mean of s and

concentration parameter of �
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Experiment 1: Single Stimulus, Four
Possible Locations

All trials in Experiment 1 belong to Case 1, but the stimulus
vector is now a scalar sT. The distribution p(s |C) in Equation (11)
becomes p(s |C) and takes the form of a truncated Gaussian dis-
tribution (Equation 6).

Putting Equations (6), (9), and (10) together and simplifying, the
final decision variable is

d � log


 xJ

�J � Js
�


 �xJ

�J � Js
� � log

pright

1 � pright
.

Experiment 2: Categorization of a Single Target With
Respect to a Variable Reference Orientation

The generative model of Experiment 2 is shown in Appendix
Figure A14. The distributions are as follows:

p(�s |C) � 2 · N��s; 0, �s
2�H(C · �s)

p(sref) � U(�90, 90)
p(sT |sref, �s) � 
(sT � sref � �s)

p(xT |sT � sref � �s) � N�xT; sref � �s, �T
2�

p(xref |sref) � N�xref; sref, �ref
2 �.

(25)

We use Gaussian distributions to model p(�s |C), p(xT |sT) and
p(xref |sref), because the variable and its mean are relatively close
in all three distributions.

All trials in Experiment 2 belong to Case 4. Putting together
Equations (9), (10), (15), and (16), we get:

p(x |C) ���� p(xT |sT)p(xref |sref)p(sT |sref, �s)p(sref)

� p(�s |C)dsT dsref d(�s)

���� p(xT |sT)p(xref |sref)
(sT � sref � �s)p(sref)

� p(�s |C)dsT dsref d(�s)

��� p(xT |sT � sref � �s)p(xref |sref)p(sref)

� p(�s |C)dsref d(�s)

�� �� p(xT |sT � sref � �s)p(xref |sref)p(sref)dsref�
� p(�s |C)d(�s).

Now we substitute the probability distributions as in Equation
(25), and p(x |C) becomes

p(x |C) � ��90

90 ���90

90
N�xT; sref � �s, �T

2�N�xref; sref, �ref
2 � 1

180dsref�2 ·

N��s; 0, �s
2�H(C · �s)d(�s).

Numerically computing the double integral is not computation-
ally feasible: It happens inside a Monte Carlo simulation of x,
which happens inside a parameter optimization, which happens

inside a large model comparison. Therefore, we approximate par-
tial integrals with the full integral:

p(x |C) 	 ���

�� ����

��
N�xT; sref � �s, �T

2�N�xref; sref, �ref
2 � 1

180dsref�2 ·

N��s; 0, �s
2�H(C · �s)d(�s).

We simplify the inner integral by making use of the fact that the
convolution of two Gaussian probability density functions is also
Gaussian and get

p(x |C) 	 1
180���

��
N�xT � xref; �s, �T

2 � �ref
2 �2 ·

N��s; 0, �s
2�H(C · �s)d(�s).

We define �x � xT � xref, then get

p(x |C) 	 1
180���

��
N��x; �s, �T

2 � �ref
2 �2 ·

N��s; 0, �s
2�H(C · �s)d(�s).

By further simplification, the final decision variable is

d � log


 �xJc

�2(Jc � Js)
�


 �xJc

�2(Jc � Js)
� � log

pclockwise

1 � pclockwise
,

where Jc � 1
1
JT

� 1
Jref

.

Experiments 3 and 4: Categorization With All Stimuli
Being Targets

All trials of both experiments belong to Case 1. Because all
stimuli are targets, the distribution p(s |C) takes the form

p(s |C) � � p(s |sT)p(sT |C)dsT

�� 
(s � sT1)p(sT |C)dsT,
(26)

where 1 is the vector of 1s and p(sT |C) is a truncated Gaussian
distribution (Equation 6).

Putting Equations (6), (9), (10), and (26) together and simpli-
fying, the final decision variable is

d � log

� �
i�1

N

xiJi


�
i�1

N

Ji�� Js
�

� ��
i�1

N

xiJi


�
i�1

N

Ji�� Js
�

� log
pright

1 � pright
.
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Experiments 5 and 6: Categorization of a Single
Target With Vertical Distractors

All trials of both experiments belong to Case 3. Combining
Equations (13) and (14), the distribution p(s |C) takes the form

p(s |C) � �� p(s |sT, sD)p(sT |C)p(sD)dsTdsD

��� 1
N �

L�1

N


(sL � sT)
(s\L � sD)p(sT |C)p(sD)dsTdsD.

(27)

Given that all distractors are vertical, p(sD) is equal to �i�L 

�sDi�. Therefore, Equation (27) is further simplified as

p(s |C) � 1
N �

L�1

N

� 
(sL � sT)
(s\L)p(sT |C)dsT, (28)

where p(sT |C) is a truncated Gaussian distribution (Equation 6).
Putting Equations (6), (9), (10), and (28) together and simpli-

fying, the final decision variable becomes

d � log
�
L�1

N


 xLJL

�JL � Js
�exp
 xL

2JL
2

2(JL � Js)
� Js

JL � Js

�
L�1

N


 �xLJL

�JL � Js
�exp
 xL

2JL
2

2(JL � Js)
� Js

JL � Js

� log
pright

1 � pright
.

Experiment 7: Categorization of a Single Target With
Homogeneous Distractors

All trials in Experiment 7 belong to Case 3, so p(s |C) takes the
same form as in Equation (27). Given that all distractors are
identical and take the value sD, p(sD) equals to �i�L 
�sDi �
sD�. Therefore, Equation (27) is further simplified as

p(s |C) � 1
N �

L�1

N

�� 
(sL � sT)
(s\L � sD)p(sT |C)p(sD)dsT dsD,

(29)

where p(sT |C) is a truncated Gaussian distribution (Equation 6)
and p(sD) is a Gaussian distribution with a mean of 0 and a
standard deviation of 	s.

Putting Equations (6), (9), (10), and (29) together and simpli-
fying, the final decision variable becomes

d � log

�
L�1

N  1
JL � Js 1

��i�L
Ji� � Js


 xLJL

�JL � Js
�exp

�xL
2

2� 1
JL

� 1
Js�

exp�1
2

��i�L
xLJL�2

���i�L
Ji� � Js�

� 1
2�i�L

xL
2JL�

�
L�1

N  1
JL � Js 1

��i�L
Ji� � Js


 �xLJL

�JL � Js
�exp

�xL
2

2� 1
JL

� 1
Js�

exp�1
2

��i�L
xLJL�2

���i�L
Ji� � Js�

� 1
2�i�L

xL
2JL�

� log
pright

1 � pright
.

Experiment 8: Detection of a Single Target With
Homogeneous Distractors

Target present trials belong to Case 3 and all distractors are
identical and take the value sD, so p(s |C � 1) takes the same form
as in Equation (29).

Target absent trials belong to Case 2 and all stimuli share the
same orientation sD, therefore p(s |C � �1) takes the form:

p(s |C � �1) � � p(s |sD)p(sD)dsD

�� 
(s � sD1)p(sD)dsD,
(30)

where p(sD) is a Gaussian distribution with a mean of 0 and a
standard deviation of 	s.

Putting together Equations (6), (9), (10), (29), and (30) together
and after simplifying, the final decision variable becomes

d � log

1
N �

L�1

N
1

��i�L
Ji� � Js

exp
1
2��i�L

xiJi�2 1

��i�L
Ji� � Js�

1


�
i�1

N

Ji�� Js

exp
1
2
�i�1

N

Ji�2
1


�
i�1

N

Ji�� Js
�

� log
ppresent

1 � ppresent
.
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Experiments 9 and 10: Categorization of a Single
Target With Heterogeneous Distractors

All trials in Experiments 9 and 10 belong to Case 3, so p(s |C)
takes the same form as in Equation (27), where p(sT |C) is a
truncated Von Mises distribution:

p(sT |C) � 2 · VM(2sT; 0, �T)H(C · sT) (31)

and p(sD) is a product of N-1 uniform distributions.
Putting Equations (9), (10), (27), and (31) together and after

simplifying, the final decision variable becomes

d � log
�
L�1

N

�0

�
2 VM(2xL; 2sT, �L)VM(2sT; 0, �T)dsT

�
L�1

N

��
�
2

0
VM(2xL; 2sT, �L)VM(2sT; 0, �T)dsT

� log
pright

1 � pright
.

Experiment 11: Detection of a Single Target With
Heterogeneous Distractors

Target present trials in Experiment 11 belong to Case 3, and
p(s |C � 1) takes the same form as in Equation (27), where
p(sT |C � 1) is a truncated Von Mises distribution (Equation 31)
and p(sD) is a product of N-1 uniform distribution. Target absent
trials in Experiment 11 belong to Case 2, and p(s |C � �1) takes
the form as in Equation (14).

Putting Equations (9), (10), (14), (27), and (31) together and
after simplifying, the final decision variable becomes

d � log
 1
N �

L�1

N

2 · VM(2xL; 0, �L)�� log
ppresent

1 � ppresent
.
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Appendix B

Additional Model Fits and Model Comparisons
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Figure B1. Experiment 1. (A) Complete model comparison. Mean and SEM of the difference in Akaike
Information Criterion (AIC; top) and Bayesian Information Criterion (BIC; bottom) between each model and the
Full model. (B) Proportion of reporting “right” as a function of stimulus orientation: data and model fits. See the
online article for the color version of this figure.
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Figure B2. Experiment 2. (A) Complete model comparison. Mean and SEM of the difference in Akaike Information
Criterion (AIC; top) and Bayesian Information Criterion (BIC; bottom) between each model and the full model. (B)
Proportion of reporting “clockwise” as a function of orientation difference between the target and the reference. (C)
Proportion correct as a function of the reference orientation: data and model fits. See the online article for the color version
of this figure.
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Figure B3. Experiment 3. (A) Complete model comparison. Mean and SEM of the difference in Akaike
Information Criterion (AIC; top) and Bayesian Information Criterion (BIC; bottom) between each model and the
full model. (B) Proportion of reporting “right” as a function of target orientation: data and model fits. See the
online article for the color version of this figure.
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Figure B4. Experiment 4. (A) Complete model comparison. Mean and SEM of the difference in Akaike
Information Criterion (AIC; top) and Bayesian Information Criterion (BIC; bottom) between each model and the
full model. (B) Proportion of reporting “right” as a function of set size and target orientation: data and model
fits. See the online article for the color version of this figure.
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Figure B5. Experiment 5. (A) Complete model comparison. Mean and SEM of the difference in Akaike
Information Criterion (AIC; top) and Bayesian Information Criterion (BIC; bottom) between each model and the
full model. (B) Proportion of reporting “right” as a function of target orientation. See the online article for the
color version of this figure.
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Figure B6. Experiment 6. (A) Complete model comparison. Mean and SEM of the difference in Akaike
Information Criterion (AIC; top) and Bayesian Information Criterion (BIC; bottom) between each model and the
full model. (B) Proportion of reporting “right” as a function of set size and target orientation: data and model
fits. See the online article for the color version of this figure.
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Figure B7. Experiment 7. (A) Complete model comparison. Mean and SEM of the difference in Akaike
Information Criterion (AIC; top) and Bayesian Information Criterion (BIC; bottom) between each model and the
full model. (B) Proportion of reporting “right” as a function of target orientation: data and model fits. See the
online article for the color version of this figure.
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Figure B8. Experiment 8. (A) Complete model comparison. Mean and SEM of the difference in Akaike
Information Criterion (AIC; top) and Bayesian Information Criterion (BIC; bottom) between each model and the
full model. (B) Proportion of reporting “present” as a function of set size, target presence, and the common
orientation of the distractors: data and model fits. See the online article for the color version of this figure.
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Figure B9. Experiment 9. (A) Complete model comparison. Mean and SEM of the difference in Akaike
Information Criterion (AIC; top) and Bayesian Information Criterion (BIC; bottom) between each model and the
full model. (B) Proportion of reporting “right” as a function of target orientation. See the online article for the
color version of this figure.
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Figure B10. Experiment 10. (A) Complete model comparison. Mean and SEM of the difference in Akaike
Information Criterion (AIC; top) and Bayesian Information Criterion (BIC; bottom) between each model and the
full model. (B) Proportion of reporting “right” as a function of target orientation. See the online article for the
color version of this figure.
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Figure B11. Complete model comparison in Experiment 11. Mean and SEM of the difference in Akaike
Information Criterion (AIC; top) and Bayesian Information Criterion (BIC; bottom) between each model and the
full model. See the online article for the color version of this figure.
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Figure B12. Crossing the suboptimal decision rules with the GODV factor models in Experiment 7. As Figure
10A, but computed with Akaike Information Criterion (AIC). Results are similar to those with Bayesian
Information Criterion (BIC). See the online article for the color version of this figure.
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Figure B13. Effects of set size in Experiment 4. Even though proportion correct increases as a function of set
size (A), mean precision decreases with set size both when estimated with the Full model (Figure 13) and with
the ODV model (B). Error bars denote �1 SEM
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Figure B14. Generative model of Experiment 2. Each node represents a random variable, each arrow a
conditional probability distribution. Notations of variables are as follows. C � nature of the world, “clockwise”
or “counterclockwise; ” �s � difference between target orientation and the reference orientation, “clockwise”
when positive; sref � reference orientation; sT � target orientation; xref � reference measurement; xT � target
measurement. Distributions are shown in the equations on the side. N(x; �, 	2) denotes a Gaussian distribution
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of the measurements, xref and xT. The optimal observer inverts the generative model and computes the
conditional probability of C given xref and xT.
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Appendix C

Combinations of the GODV Family With Suboptimal Rules in Experiment 7

In Shen and Ma (2016) where Experiment 7 was first published,
we tested three classes of suboptimal rules: Class I contained
“simple” suboptimal rules, Class II contained “two-step” rules in
which the observer first decides on target location and then reports
the tilt of the purported target (thereby ignoring target uncertainty),
and Class III encompassed variations of the optimal rule. All
decision rules took the form “report” “right” when d � 0,” where
d is the decision variable.

Here, we created new models by combining these suboptimal
decision rules with the GODV factors. Moreover, we included in

the derivation of the decision rule a prior probability that the target
was tilted right in the models where this was possible (the SumErf
models in Class III). To combine the suboptimal rules with factor
D, we added Gaussian noise with standard deviation 	d (a free
parameter) to d. We left out several invalid combinations: (a) we
combined the sign rule in Class I only with models without factor
D, because d in the sign model is a small integer rather than
continuous; (b) we combined the SumX rules in Class II only with
models base, G, D, and GD, because those rules are only compat-
ible with fixed precision.

Appendix D

Mean and SEM of the Parameter Estimates in the Full-Opt Model for All Experiments

Exp. no. pprior J� (deg�2)  
 	d � (deg�2)

1 .485 � .029 .234 � .042 .022 � .012 .96 � .36 .76 � .39 .023 � .013
2 .454 � .054 .144 � .011 .079 � .018 1.32 � .48 1.5 � 1.2 .010 � .007
3 .490 � .039 .073 � .011 .025 � .017 1.68 � .51 .207 � .062 .018 � .011
4 .467 � .026 .212 � .028 .015 � .007 .27 � .18 .39 � .21 .048 � .019

.185 � .036

.125 � .014

.096 � .014
5 .492 � .023 .153 � .018 .034 � .006 .31 � .10 1.05 � .19 .010 � .004
6 .534 � .039 .233 � .096 .065 � .023 .27 � .17 .98 � .25 .013 � .007

.137 � .015

.133 � .018

.121 � .018
7 .496 � .010 .075 � .015 .053 � .023 .20 � .15 .30 � .12 .073 � .017
8 .514 � .007 .468 � .070 .039 � .019 1.13 � .68 .105 � .038 .177 � .031

.261 � .064

.159 � .044

.112 � .027
9 .505 � .006 .120 � .076 .0004 � .0004 1.87 � .55 .41 � .18 .002 � .002

10 .504 � .005 .164 � .033 .012 � .004 .94 � .29 .182 � .076 .034 � .026
.068 � .015
.039 � .012
.020 � .007

11 .470 � .013 .37 � .13 .012 � .003 .146 � .073 .743 � .060 .17 � .16
.148 � .066
.080 � .043
.050 � .025

Note. Confusingly, Liu et al. (1995) also measure “efficiency” by varying the external noise, but in their
terminology, any form of inefficiency is purely a consequence of the internal noise.
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